NH
& JOURNAL OF

\$ e e S31Val
?E GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 42 (2002) 28-53

www.elsevier.com/locate/jgp

FuzzyC P2
G. Alexaniar?, A.P. Balachandra® G. Immirzi®*, B. Ydri2

@ Physics Department, Syracuse University, Syracuse, NY 13244, USA
b Dipartimento di Fisica, Universita di Perugia and INFN, 1-06100 Perugia, Italy

Received 5 April 2001; received in revised form 9 July 2001; accepted 7 September 2001

Abstract

Regularization of quantum field theories (QFTs) can be achieved by quantizing the underlying
manifold (spacetime or spatial slice) thereby replacing it by a non-commutative matrix model or
a “fuzzy manifold”. Such discretization by quantization is remarkably successful in preserving
symmetries and topological features, and altogether overcoming the fermion-doubling problem. In
this paper, we report on our work on applying this procedure of the four-dimengigtfaand its
QFTs.CP?is not spin, but spin Its Dirac operator has many unique features. They are explained
and their fuzzy versions are described. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We can find few fundamental physical models amenable to exact treatment. Approxima-
tion methods like perturbation theory are necessary and are part of our physics culture.

Among the important approximation methods for quantum field theories (QFTs) are
strong coupling methods based on lattice discretization of underlying spacetime or perhaps
its time-slice. They are among the rare effective approaches for the study of confinement
in QCD and for non-perturbative regularization of QFTs. They enjoyed much popularity in
their early days and have retained their good reputation for addressing certain fundamental
problems.

One feature of naive lattice discretizations however can be criticized. They do not retain
the symmetries of the exact theory except in some rough sense. A related feature is that
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topology and differential geometry of the underlying manifolds are treated only indirectly,
by limiting the couplings to “nearest neighbors”. Thus, lattice points are generally manipu-
lated like a trivial topological set, with a point being both open and closed. The upshot s that
these models have no rigorous representation of topological defects and lumps like vortices,
solitons and monopoles. The complexities in the ingenious solutions for the discrete QCD
6-term [1] illustrate such limitations. There do exist radical attempts to overcome these lim-
itations using partially ordered sets [2], but their potentials are yet to be adequately studied.

A new approach to discretization, inspired by non-commutative geometry (NCG), is
being developed since a few years [4—14]. The key remark here is that when the underlying
spacetime or spatial cut can be treated as a phase space and quantized, with a pérameter
assuming the role df, the emergent quantum space is fuzzy, and the number of independent
states per (“classical”) unit volume becomes finite. We have known this result after Planck
and Bose introduced such an ultraviolet cut-off and quantum physics later justified it. A
“fuzzy” manifold is ultraviolet finite, and if the parent manifold is compact too, supports
only finitely many independent states. The continuum limit is the semi-clagsieal 0
limit. This unconventional discretization of classical topology is not at all equivalent to the
naive one, and we shall see that it does significantly overcome the previous criticisms.

There are other reasons also to pay attention to fuzzy spaces, be they spacetimes or spatial
cuts. There is much interest among string theorists in matrix models and in describing
D-branes using matrices. Fuzzy spaces lead to matrix models too and their ability to reflect
topology better than elsewhere should therefore evoke our curiosity. They let us devise new
sorts of discrete models and are interesting from that perspective. In addition, it has now
been discovered that when open strings end on D-branes which are symplectic manifolds,
then the branes can [16] become fuzzy, in this way one comes across fuzgyRériand
many such spaces in string physics.

The central idea behind fuzzy spaces is discretization by quantization. It does not always
work. An obvious limitation is that the parent manifold has to be even dimensional. (See
however [15], for constructing fuz2gP3/Z, and other non-symplectic manifolds, even or
odd.) If it is not, it has no chance of being a phase space. But that is not all. Successful
use of fuzzy spaces for QFTs requires good fuzzy versions of the Laplacian, Dirac equa-
tion, chirality operator and so forth, and their incorporation can make the entire enterprise
complicated. The torug? is compact, admits a symplectic structure and on quantization
becomes fuzzy, or a non-commutative torus. It supports a finite number of states if the
symplectic form satisfies the Dirac quantization condition. But it is impossible to introduce
suitable derivations without escalating the formalism to infinite dimensions [17].

But we do find a family of classical manifolds elegantly escaping these limitations. They
are the co-adjoint orbits of Lie groups. For semi-simple Lie groups, they are the same
as adjoint orbits. It is a theorem that these orbits are symplectic [18]. They can often be
quantized when the symplectic forms satisfy the Dirac quantization condition. The resultant
fuzzy spaces are described by linear operators on irreducible representations (IRRs) of the
group. For compact orbits, the latter are finite-dimensional. In addition, the elements of
the Lie algebra define natural derivations, and that helps to find Laplacian and the Dirac
operator. We can even define chirality with no fermion doubling and represent monopoles
and instantons (see [4-9] and the first three papers in [13]). These orbits therefore are
altogether well-adapted for QFTSs.
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Let us give examples of these orbits.

e $2: Thisis the orbit o8U(2) through the Pauli matrixs or any of its multiples. o3 (A #
0). Itis the se{rgosg ™! : g € IU(2)}. The symplectic form ig d cosé A de with 6, ¢
being the usua$? coordinates [19]. Quantization gives the spifiJ(2) representations.

e CP2% CP?is of particular interest being of dimension four. It is the orbitSf(3)
through the hyperchargé = 1/3 diag, 1, —2) (or its multiples):

CP?:{gYg': g e V@A) (1.1)

The associated representations are symmetric products of 3's (gee Section 2).

e UMB)/[U) x UD]: This six-dimensional manifold is the orbit &U(3) through
A3 = diag(1, —1, 0) and its multiples. These orbits give all the IRRs containing a zero
hypercharge state.

In the literature, there are several studies of the fuzzy physi€®df= $2 [3—15], while
there is also a rigorous and beautiful treatmer #f by Grosse and Strohmaier [14]. The
present work develops an alternative formulation@at2. It is close to earlier treatments
of §2[12,13] and seems to generalize to other quantizable orbits. It is eventually equivalent
to that of [14] as we show, so that the first studyC#? is of that reference.

Throughout this paper, we tre@P? as Euclidean spacetime even though the possibility
of treating it as spacial slice is also available.

Section 2 explains the basic propertie€dt2. We quantize itin Section 3 to produce the
fuzzy C P2 (some technical details necessary to quantization are provided in the Appendix
A). Functional integral quantization of tensorial fields can also be done as we show in
Section 4 (although topological considerations would prefer a more elaborate approach;
see especially the first and last papers of [13]). In hon-commutative geometry (NCG), a
central role is assumed by the (massless) Dirac operator. Section 5 reviews3t for
C P! while Section 6 studies our approach to it in detail fbP2. Analysis shows its
equivalence to the Dirac—Kéhler operator [18P2 is not a spin, but a spirmanifold, and
that has exotic consequences for &k 3) spectrum: left- and right-chiral modes transform
differently underSU(3). Section 7 studies the fuzzy analogue of the Dirac operator. This
work is greatly facilitated by coherent states and stdipfoducts. The necessary material,
contained in [9,15], is reviewed and used to discretize the continuum material here for both
§2 = CPandCP2. Incidentally ther product is particularly useful for formulating fuzzy
analogues of important continuum quantities like correlation functions.

CP?is a surface irR® described by an algebraic equation. Appendix A establishes the
fuzzy version of this equation and in addition useful identities am@in@) generators.

Appendix B is pedagogical and explains why?2 is not spin and why th8U(3) spectrum
of the spin Dirac operator has exotic features.

2. On CP?

CP?is a Kahler manifold describable in different ways. Thus, as mentioned before it is
the orbit ofU(3) through the hypercharge operaioor its multiples (the grougJ(3) has
eight generatorg which satisfy [;, ¢;] = ifijt; the hypercharge i¥ = (2/+/3)tg; inthe3
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representation the generators étg2);, where the\; are the eight Gell-Mann matrices).
As the stability group ot is U (2)

u 0
U@ = 0 detu-l] € SUERE (2.1)
we have that
CP?=U®R)/U (2. (2.2)

As its name reveals, it is also a projective complex space or the spédesobspaces in
C3.1f &£ e C3—{0}, a point ofC P2 is the equivalence clags) = (1&) forall» € C1—{0}.
Choosingh = (3° |§i|2)_1/2, we see thaC P? = {(¢) = (£€7): (3 |&/?) = 1}. Hence,

CP?=S$°/U(1). (2.3)

In (2.1), we can first quotierBU(3) by SU(2). That is just the abové®. That is because
SU(3) acts onC3 and transitively on its sphet®® = {¢ € C3: Y |¢]1? = 1}. At (1,0,0) €
$°, the stability group iSU(2) showing the result. In this way, we see that

CP? =[U®BR)/VQ]/UQ) = S°/UQ). (2.4)

The eight Gell-Mann matrices form a basis for the real vector space of traceless hermitian
matrices{}_&A;, £ = (£1,...,&) € R®). SOCP? is a sub-manifold ofkR®. There is a
beautiful algebraic equation for this sub-manifold. It is thisdgtbe the totally symmetric
U (3)-invariant tensor defined by

rikj = 58+ (dijk+ ifi) A (2.5)
Then
£ € CP? & dij&&; = constantx &. (2.6)

A pleasant manner to demonstrate this result is as follows. The symi8di3g invariant
producty, n — x Vvn, (x Vn); = dijkx; n« can be rewritten in terms of traceless hermitian
matricesM, N as

MV N = 3{M,N} — §Tr({M, N}), (2.7)
where
M:Z)(j)\j, N:an)\.j. (28)
For this productM = §ig fulfills
1)
MVM=——M 2.9
7 (2.9)

This relation is valid for points on the entire orbit throutjty by SU(3) invariance of thes
product.

Conversely, relation (2.9) implies thaf is in the orbit ofAg. For we can diagonaliz&/
by anSU(3) transformatiorg while keeping (2.9). After scaling the diagordh = gMg—*
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to A to reduce—(8/+/3) to 1, we haveA v A = A, A = diag(a, b, —a, —b). Comparing
the difference of the first two rows on both sides, weagetb = (a + b)(a — b). If a = b,
thenA = 3aY. If a # b, thena + b = 1. Comparing the first row, we gef —a —2 = 0, or
a =2or—1.S04 =diag2, —1, —1) or A = diag(—1, 2, —1). Both become proportional
to Y after Weyl reflections, establishing the result.

3. Quantizing CP?

A particular approach to quantizing co-adjoint orbits was developed many years ago in
[19]. According to that method we obtain fuz&yP? quantizing the Lagrangian

_ _ A
L= iNTr(Yg(t)_lg(t)), g(t) e U@B), N =constant Y = % (3.1)
A point £(r) € CP? is related tog(r) by £(1);% = g()Yg (), while on CP? the
symplectic form isiNdTrYg—1dg = —iNTr[Y g~1dg A g~1dg]. Writing g = €*¢/2,

for a Hamiltonian description we may take as phase space (local) coordinatésahe
their conjugatesr; = (3L/36"), but the Lagrangian being of first order the latter are all
constraints. To simplify the constraints we defifig by g ldg = ()\.j/Zi)Ejidei, and use
the variables\igr = —nj(E‘l)ji, which have Poisson brackets

)\"
{AiRr, 8} = gz—;., {Air, AjR} = fijkAKR (3.2)

and are therefore the generatorsk(3) transformations o (¢) acting on the right. In
terms of these variables the constraimts- i NTr(Yg~1(3g/36")) ~ 0 become

N
AR+ ﬁfsi,s ~0 (3.3)
They are second class for= 4, ..., 7, first class fori = 1, 2, 3, 8, corresponding to the

fact that ifg(r) — g(r)€*?®/2 i = 1,2 3,8, thenL — L — (N/+/3)88;g. Thus, for

the generatoi’s for right hypercharge we havig; ~ —(2/3)N, and the right “isospin”
generatord,g, @ = 1,2, 3 vanish,l,g ~ 0. We can make a first class set (classically
equivalent to all the constraints) by adding to these constraints complex combinations of
the second class constraini§; ~ —(2/3)N, I,z ~ 0 and forN > 0, Asg — i Asg ~

Agr —iA7r ~0and forN < 0, Agg +iAsg ~ Aeg +iA7g ~ 0.

These constraints can be realized on function&0d(B). As isospin singlets have hy-
percharge in integral multiples of 2/3, we find théte Z. With N fixed accordingly, the
constraints together mean that for right action, we have highest weight isospin singlet states
of hypercharge-(2/3)N.

An IRR of U(3) is labeled by(n1, n2), n; € N. It comes from the symmetric product

s s [1yeees 1} . . .
of n1 3's andns 3*'s: a tensorTj1 ,-Zl for (n1, n2) hasni upper indicesno lower in-
seenJnp

9-"9il'll

. . i1i2
dices and is traceless, X
1J25 -5 Jnp

as|(n1, n2), I2, Is, Y) wherel2, I3 andY are square of isospin, its third component and
hypercharge.

= 0. Within an IRR, the orthonormal basis can be written
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Let g — U®m2)(g) define the representatiani, n2) of SU(3). Then the functions
given by((n1, n2), I2, I, Y |U "2 (g)|(n1, n2), 0, 0, —(2/3) N) fulfill the constraints. By
the Peter—Weyl theorem, their linear span

Y ERND((n1, n2), 17, I3, YU "2 ()] (n1, n2), 0,0, =3 N) (34)

gives all the functions of interest.

If N = N > 0, that requires thati1, n2) = (N, 0). These are just the symmetric
products ofN 3's. If N = —N < 0, (n1, n2) = (0, N) or we get the symmetric product of
N 3*'s. The representations that we get by quantizing the Lagrangian (3.1) are\thOs
or (0, N).

For CP2, there are coordinate functiofis whereé; (§) = &. The Y §; & is a constant
function which we can take to Hethe function with value one. On quantizatignbecome
the operators constartA’ which we also denote a§. Since Y AX Al = I, and
C> = (1/3)N2+ N in (N, 0) or (0, N) (see Appendix A), their exact form is

. AL A n
§ = —, D &E =1 (3.5)
JiN2+ N
So
(€. 8] = fiikék (3.6)

4
1
V3N2+N
and they commute in the large limit. A
It is a remarkable fact tha fulfill (2.6) for any N if &;’s belong to(N, 0) or (0, N).

A proof that uses the creation—annihilation operator techniques of Grosse and co-workers
[6-9] is given in Appendix A. The result is a “fuzzy” analog of the defining relation (2.6)

(N/3) +(1/2) s

J@/3NZ+ N

The algebrad generated by; is what substitutes for the algebra of functiads=
C>®(CP?). By Burnside’s theorem [20], it is the full matrix algebra in the IRR. FUE#2
is just the algebra.

The following point, emphasized by [14] is noteworthyflie A, it has the partial-wave
expansion

diji€j = (3.7)

FE =3 Fb 1 yAnn2), 12 I, YU (g)|(n1, n2). 0,0, 0),
Saha = g)VSgil- (38)

The ket|(n1, n2), 0, 0, 0) exists only ifn1 = ny so that the sum in (3.8) can be restricted
tony = na. If F € A, thenF too has an expansion like (3.8), where the series is cut-off
atn = N. That is because of the following. TI8J(3) Lie algebrasu(3) has two actions
ONF:F — LEF = AyF andF — —LRF = —FA,. The derivationF — adL,F =
LLF — LRF = [A,, F] is the action which annihilatesand corresponds to thei(3)
action onC P2. As F transforms agN, 0) (for N > 0 say) forAg and ag0, N) for —Ao’f
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A decomposes into direct sum of IRR&, 0)® (0, N) = @fl"zo(n, n). If ((n,n), I%, I3, Y)
furnishes a basis fa, n), thenF = Z{)V F72,13.y|(”’ n), I, I3, Y). Identifying this basis
with the one in (3.8) fon < N, we see thaf transforms like a function oft P2 with a
terminating partial-wave expansion.

A more precise statement is as follows [14]. We can put a scalar produttusing the
Haar measure 08J(3) and completed into a Hilbert spacé{. On?, elementsF of A act
as linear operators by pointwise multiplication. B¢ty o) be the subspace @1 carrying
the IRR(N,0) and Py g) © H — H.0) the corresponding projector. Then we have a
mapA — Pw.0) A Pw.o; F — Pw.oyF Pw.oy Which is ontoA. Thus, elements oft
approximate functions in a good sense.

4. Fuzzy scalar fields

Here we briefly indicate a certain fuzzy version of the free scalar field action. It is very
natural and a generalization of fuzgyP* action proposed earlier [5—11]. Still certain less
obvious actions based on cyclic conomology have been proposed [13,15], they have distinct
topological advantages and correct continuum limits as well.

The operatorad L; = LiL - LIR correspond to th&UJ(3) generators for functions on
CP2. ALaplacian for fuzzyC P2 is thusad L?. A scalar fieldp is a polynomial in the fuzzy

coordinate function§;, so¢ is just a matrix inA. The Euclidean action fap is
S(¢) = constantx Tr(pTadL2¢), adL;¢ =[L;,$]. (4.1)
Let Lk be the eigenvalue of the continuum operator for the [RRK); [14] gives
Ak = 2K (K +1). (4.2)

If N is the maximun¥ for the fuzzy space, theau Ll? has the spectruio, A1, ..., Ay},
it is just the cut-off spectrum of the continuum Laplacian.

5. The Dirac operator on S~ CP?

This section is a warm up for what follows @®P? next. It contains a partial-wave
analysis for the eigenstates of thi& Dirac operatoD which can be generalized ©P?.
Let

SP={xeR%: ) xi=1}, (5.1)

andx be the coordinate functions, (x) = x.
Then the Dirac operator is

op

D = 04Paup Jp, Pap = Sap — XaXp, Jp=Lp + 2 (5.2)

Lo=—i(XA %)a.

P projects the Pauli matrices, to their tangent space componeatsP,s. Lg andJg are
orbital and total angular momenta, respectively.
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If fe A= C>(5?),ithas the partial-wave expansion
fo) =Y fi(kMID® (g)[k0) (5.3)
kM
1

whereD® : ¢ — D® (g) define the angular momentutrRR of SU(2) andgoz g~ =
o - x. The action ofL, on it is specified by

Lo (kM|D® (g)[k0) = —(kM[J& D® (g)[K0) (5.4)

whereJ® are angular momentumSU(2)-generators.
D acts onA ® C2 = A? = {(a1/2, a-12) : ax € C®(S?)}. It anticommutes with the
chirality operator

r=o-%. (5.5)

We now find the eigenfunctions df.

Following (5.3), we can define a functiap on U(2) as follows. Forg € SU(2), x4 (g2)
is defined bygosgt = o - x(g). Theo - % is now the chirality operator od? defined in the
following way. The action o -x on D) is specified byg -z D/2](g) = o-x(g) DY (g).
We will henceforth often omig in writing x (g). SinceDV/? (g) = g, itfollows that helicity
+1 eigenfunctions o - £ = DY/?63D1/? — 1 are

(1/2) (1/2) (1/2)
D310 = Dy 410 D215 11/2)- (5.6)

Here,D,()ljél}2 = g. +1/2, &ij being functions or8U(2): gij(g) = gij. They have the equiv-
ariance property

DYP g™y = DD, (9)e™". (5.7)

Unlike (5.7), elements afi? and hence too its chirality-1 subspaceél + o - £/2).42
are invariant undeg — g€ . The expansion of elements of these subspaces using the
aboveD’s must thus have anothér in each term transforming with the opposite phase to
that in (5.7). Accounting for this fact, we can write fore A2,

a=a"+a", at = (ali/z,af

@ = Zé Dr(ljiFl/Z ilff/z, JEeC. (5.8)

Now orbital angular momenturz is not defined on the individual factors in (5.8). We
must lift it to the operator7 which acts onD) and D*/? in such a manner that

transforms like a vectotjfﬂL areU(2) generators acting by left translation
[eleﬁjﬁ D(l/z)]( )= D(1/2)(e—i0,goﬂ2g) — [e—iGﬂUﬁZg]ij. (59)
We now reinterprefz as

@=ﬁ+%. (5.10)



36 G. Alexanian et al./ Journal of Geometry and Physics 42 (2002) 28-53
Because of the transformation rule (5.9), we find,

JsDM? =o. (5.11)
So

DDr(zjzpl/zD.(,ﬁ}z = [Jﬂ n ;1/2][Ua7)aﬂD(1ﬁ>2]‘ (5.12)
Further simplification can be achieved by writing

0aPap = [30 - £, [30 - £, 0]l = DY?[303, [J03. 0]l DYP D (5.13)
and noticing that—D(l) jﬂ = JR areSU(2) generators acting in the right gf

[€ £1(g) = flg€?] (5.14)
(f : U — C being a function orsU(2)). Putting this in (5.12)

DD,(,JiFl/zD(lﬁiz = [D(]) I ;1/2]D( Yz )[203’ [303. 0all v 2172 (5.15)
The summation oa can be restricted té corresponding to raising and lowering operators

as thew = 3 term vanishes in the last factor.
It follows that:

(Da), = — ZSH_D(]l/Z(JJr )1/2.-1/2 D}'2 1/2
o . 1
+3°&67 DY (1Y) 12412 DA (5.16)
j.n

which can also be written in the “Dirac—Ka&hler” form [14]

by / )
Zfl Df -12 | 0 (JEJ))71/2,+1/2 ZEI Dnj+1/2
Y D’yllﬁ ) 11/2.-172 0 ZE;{_Di'f),l/z
(5.17)

The eigenvalues dp aree (j+(1/2)) withe = +1, each with degeneracg;j+1), while the
corresponding eigenfunctions hag;Ei = cn (7, F(1/2); (1/2), £(1/2)|j — (1/2)¢, 0.
Explicitly,

2 2

where additional superscripts have been added to the eigenfunction.
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6. The Dirac operator on CP?

CP2is not spin, but spin[14,21]. This fact introduces serious differences between the
C P2 Dirac operator and the Dirac operator for a spin manifold sudhsdiscussed last.

TheC P? Dirac operator and its fuzzy version have been treated in [14]. Here we develop
an alternative approach which seems capable of generalization to other coset spaces.

Elsewhere [15], we plan to treat tensor analysisCo¥ and its fuzzy versions in the
language of projective modules. Here we will summarize just some points relevant for us.
The next section will give their fuzzy versions.

6.1. The projective module for tangent bundle and its complex structure

The generatorad A; in the adjoint representatiofd : ¢ — Ad g of U(3) = {g} have
matrix elementsadi,; )ik = —2ifjjk, wherefijk is totally antisymmetric. We have the identity
[%i, A;] = 2ifijr, and a similar relation foad A; . As hypercharge commutes with itself and
isospin generators, it follows thag; = 0, if i or j = 1, 2, 3 or 8. Thus, the tangent vectors
toCP?ats® = (0,...,0,1), or equivalently akg = A;£°, areadi;, j = 4,5,6,7. The
directionsad.;, j = 1, 2, 3, 8 are normal. At any other poi§ti; = ghgg~! € CP?, the
normals accordingly aradg(ad ;) Ad g 1= E,-(])ad)»i. j=1,238, wheregl.(g) =§.
That means thafiméksl(” = 0. The four orthogonal direction&d g(ad 2 ;) Ad g1 =
4,5, 6, 7) in the trace norm span the tangent space.

The eigenvalues add Y (Y = (1/f)A8) and hence also afl/+/3)¢ adxr; are+1, 0
corresponding to the meso#s K, n° and7 in the flavor octet terminology. I V) is an
eigenvector for eigenvaluel, (1/+/3)(&adr;) x ) = x4, thens(’)x(+) (1/f)§(f)

1
(g(S)adx\l)k X(+) = 0 from above wherg = 1, 2, 3, 8. Hence x (" is a tangent &. So is
X( ) for eigenvalue-1. Hence x ® span the tangent space and the null spacganf:;
spans the space of normals.
We can now present sections of the tangent bufidle*? as a projective module. Let
AB =A@ CE={ ... )

1Eadh)? =P (6.1)

is a projector and.A8 is seen to consist of the sections of tangent bundle from the above
remarks.

The complex structure oft P2 can be thought of as a splitting of the tangent space
T:C P2 as the direct suri, ' CP2 + 7, CP2 for all ¢ € CP?in a smooth manner . The

tensorJ of complex analysis &t is then+i on T;i)(CPZ.

In the language of projective modules , we must thus $péis the sum of two orthogonal
projectorsP™®). The tensot7 is +i on P™® A8, thatis,J = i (P — P()). Hence, also
JP=PJ=J.

SU(3)-covariance suggests the choiceRSf) A8 as eigenspaces 01/+/3)&;ad:; for
eigenvaluest1. Hence,

PE = fg,adki(%éjad)\j +1). (6.2)
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As ad); is antisymmetric, we have that
PHT — p) J'=-7. (6.3)
From 7, we can also write the Levi—Civita symbol in &J(3)-covariant way. It is

€iji = 3JijJa. [1: antisymmetrization (6.4)
6.2. The gamma matrices

SinceC P? is a sub-manifold oR8 , it is natural to start from the Clifford algebra &¥.
Let its basis be the 1& 16 matricey; (i =1, 2, ..., 8) with the relations

PPt =28 P = (6.5)

The y-matrices which will occur in the Dirac operator are not these, rather they will be
16 x 16 y-matricesy,, with the same relations

lvi. vj} = 255, 7/,-T =y (6.6)

but which act by left multiplication on the algebra generated’bhythat is on the algebra
Mat;g of 16 x 16 matricesV. Thus,

)/iM = );iM. (67)

The matrices of Mag have a scalar produ¢d, N) = Tr (MTN) for which yl.T =¥i.

The CP? y’s are the tangent projectionsPjj. There are only four of them at each
& which are linearly independent. We have to find a four-dimension subspace ¢f Mat
at eacht on which they can act. If we fail in that, we will end up with more than one
fermion.

We first find this subspace &f. At £9, define the fermionic creation—annihilation oper-
ators

al =i@Ga+ips), a1=3Ga—ife), ay=3iGe+ivr, a2 = (e — it
(6.8)
al transform agk*, K9), a, as(K~, K©). Let
0) =a1a2, |} =all0) (@=1,2), [3)=ajai0). (6.9)

They span a four-dimensional space. Thg4 < a < 7) act irreducibly on this space. If
a) = 3(a+iys),  ag=3(r+iry) (6.10)

and their adjoints define their creation—annihilation operatfyss their vacuum state.

For an appropriate subspace at other point€ #f, we use the fact thaBU(3) acts
transitively onC P2. Thus, we can regard € C P2 as a function or8U(3) with value&(g)
atg via the relationgrgg ™ = 1;&i(g). Thent® = &(e), e = identity.
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Now the algebra o8U(3) can be realized using, the generators being
1 = 2 fiikyi vk (6.11)

Their 16-dimensional representation can be split in® 8 using the projectory =
(1+79)/2,y9 = y172, ..., y8. They; transform as an 8nder the actioy; — [¢¢, y;] by
derivation

[, vil == adtjy;i = ifjiiy. (6.12)

LetT (g) bethe image of in theSU(3) representation given by (6.12)(g) can act on Mats
by conjugation according t8d 7'(g)M = T (g)MT(g)~L. Theads; are the infinitesimal
generators for the actiolhd T'(g) of SU(3).

The four-dimensional vector spaceg@t= e and its basis can be labelled &ge) and
{lv;e),v=0,a,3:|v;e) = |v)}. The vector space and its basigatre then

V(g) =AdT(g)V(e) = T(g)V(e)T(g) 2,
v g) = AdT (g)|vi e) = T(g)|v: e)T(g) ™. (6.13)

It is on this vector space that Pjj(£(g)) acts by left-multiplication.

On the vector spac& (e), the U(2) subgroup ofSU(3) acts by conjugation. From
the particle physics interpretation éf7, we see that/(e) decomposes into the direct
sum

(I=0Y=-2®& (3 -1 00). (6.14)

To see theSU(3) representation content of, g), let us first focus ono; g). |0; e) = |0)
is bilinear and antisymmetric in thes and had = 0, Y = —2. The actiorT (g) preserves
the number ofy’s. Thus, itsSU(3)-orbit is contained in the vector space spanned by the
antisymmetric product of twg'’s, that is,y; = (1/2)(y;y; — v;vi)- This vector space
transforms as 1@ 10 8. Only 10contains anf = 0, Y = —2 vector, namely2~, thus
|0; g) € 10= (N1 =3, N2 =0).

A more explicit formula can be written. L&t3, 0); (I, I3, Y); e) be the basis of vectors,
which are linear iny; and transforms as_1@We have:|(3, 0); (0,0, —=2); ¢) = |0; e).
Then

10: g) = AT (g) [0: €) = (3. 0): (. I3, Y): ) Dy 5 1. 0,02 (&) (6.15)

where DGO : ¢ — DGBO(g) is the IRR 100f SU(3) and the basis is labelled by
I,13,7).
We can analyze th8U(3) content and write an explicit formula for evely;, g), ! |a; ¢)

(@ =1, 2) hasy;’s andy;jK’'s where we mean by the totally antisymmetrized product
of ¥, ¥j» vk, ..., vi- They; transforms as an 8r (N1 = 1, N> = 1) while yjjx transforms
as 27® 10 10® 8 @ 1. We can take linear combination of andyjjk to form two new
8's such that the §art of |«; e) is in a single 8 Also |«; e¢) has] = 1/2,Y = —1 and
suchavectoroccursonlyin80and 27 Thus,«; g) (¢ = 1, 2) transforms as the direct sum

1 The analysis of th&U(3) representation content &f(g) is due to Brian Dolan.
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8 ® 10 27, calculating explicitely the coefficients we find

oy — /3 . . 1.1
lo; g) = \/;Kla ;U I3,Y); e>D(I,Ig,Y),(1/2,(3—2a)/2,—1)(g)

1 . . (3,0
- §|(3 0); (I, I3, Y); e>D(1 I3,Y), (1/2)(3,20()/2‘,1)(8)

+\/ |(2 2); U, 13,Y);e)D (1 13 Y),(1/2,(3—20)/2,— 1)(8) (6-16)

There remaing3; e) with I = Y = 0. It is a linear combination of a constam;, and
vijk- (i) The constant part transforms as@u(3)-singlet; (i) yjj was treated above; (iipijw
is 27 8. U (2) singlets with] = Y = 0 are contained only i8U(3) singlet 8and 27so
that|3; g) transforms as & 8 ® 27, the 8being a mixture of & from yj;, yiju. Calculating
the coefficients explicitely, we find,

13 ) = —210: (0.0, 0)5 ) + /211 1 (1. 13, ) ) DD ) 000)(®)
+1/ 25 |(2 2);(U,13,Y);e)D (1 13 Y), (000)(8) (6.17)
6.3. The Dirac operator

We require of theC P2 Dirac operatof that it is linear in derivatives and anticommutes
with the chirality operator”

I = — €YV ViN- (6.18)

At & = &9 I = —y4p5v6y7 and is+1 on|0; e) and|3; ¢), and—1 on|o; e) (e = 1, 2).
Hence,I' = +10n|0; g), |3; g) and—1 on|«; g) for all g. The former have even chirality
and the latter have odd chirality.

Now y; Pj anticommutes withi”, while theSU(3) generators

Ji=Li+adef, L = —ifijké; 0 (6.19)
0k
commute withI". Hence,
D= J/,"Pij Jj (620)
anticommutes with™,
(I, D} =0, (6.21)

and is a good choice for the Dirac operator.

D acts onA ® Maty. But there are only four tangent gammas at eg@h, so we have
to reduced ® Matjg to V(g) (in a n appropriate sense) at edaly). We can achieve this
reduction as follows. The functiorgsare defined according to

E@ =TT (9. (6.22)

where the notation means tthapd T-1 are to be evaluated gt Hence, ifu € U(2),
the stability group ofs, £(gu) = £(g). This means thatl ® Mat;g consists of sections
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of the trivial U (2)-bundle overC P2. The same is the case for its left- and right-chiral
projections

1+r
v, = TA ® Matyg. (6.23)

But that is not the case fd0; g) and|«; g). Underg — gu, |0; g) transforms as an
V(2) singlet withY = —2 and|«; g) transforms as aBU(2) doublet with hypercharge
Y =-1.

Let g denote the matrix of functions dBUJ(3) with gjj(g) = gij, g € SU(3) (g is just a
simplified notation folD*9). We regard elements of @ Mat; ¢ as functions of, invariant
under the substitutiop — g u. Accordingly, let us also introduce the vects g); a =
0, o, 3 which atg are the vector$u; g(g)) = |a; g). Note that on a functiorf on SU(3),
the left- and right-actions df € U(3) are f — hLR £, where(h! f)(g) = f(h—1g) and
(R f)(g) = f(gh).

Now consider, in the case @, g), the wave functionsﬂ)((%ﬁigoyo’z). They exist only if
N> = N1+ 3. The combination

(N.N+3) N
D1 15 v)0.0.210: &) (6.24)

is invariant undeg — gu at eachg and can form constituents of a basis for the expansion
of functions inA4 ® Matsg.
The remaining elements of a basis can be found in the same manner, being

1 (N1,N2) ~ A _ (N,N) ~
TQD(I,}s,f)(l/z,fm,lﬂmf g N2a—=N1=00r3 D y000/38) (6.25)

where1/2,—1/2 stand forw = 1, 2 andm is summed over.

There is a subtlety we encounter at this point. We also came acrossSg.ft®rbital”
SU(3) momentumL, does not act on the individual factors in (6.24) and (6.25), which are
functions orSU(3) and not jusC P2. Itis thus necessary to lift them to operatoﬁé which
act ong in such a manner that when (6.22) is usedransform undeSU(3) in the way
desiredf — hLé. Thus,jl.L are generators &U(3), the left-regular representation, and
the Dirac equation is to be reinterpreted withreplaced by

Jj=Jf +adt. (6.26)

Restricted ta4d ® Mat;g, (6.26) is the same as (6.20).

Thelv; g)isT (g)|v; e)T(g)~Lsolv; g)isT|v; e)T L. Now(hiT)(g) = T (h~1g). That
is, X (T [v: )T 1) (g) = T(h™YH)T(g)|v: €) T(g) T (h), which has the infinitesimal form
ij(T lv:e)T~1)(g) = —ad 1(T(@)v; e)T (g)~1). We conclude that

Jilv, &) = 0. (6.27)

The expression foP is in (6.1). Using commutation relations, we can write

viPi = 3lcé. (158, vill. (6.28)
Now AdT y; = T ij—l = yAd gy, whereAd g(g) = Adg representg in the octet
representation, it is real and orthogonal. Hence,

viPi = 3{IAd Tz, [15, v, AT 1A & (6.29)
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Since|v, §) = AdT|v;e), AdTLv; 8) = |v;e); 5. [tg. v:i]] consists only of tangent
spacey’s ate. The action of.} on|v; g) is thus
AdT[s§. [tg. iIAT Hv: §) = ADT{[15. [15. villIv: e)}. (6.30)
The action ofD on typical basis vectors like (6.24) follows:
(N.N+3) sy — Aiads. 7. y(N.N+3) - e .
DD(I,Ig,Y)(O,O,Z)lo’ g> = §{Adglj\7iD(IJS’Y)(O’O’Z)}Ad T[lé, [Ié» yj]] |Ov €>. (631)

The termin braces alsp has a considerable simplification. $irfcg)(g) = f(h~1g) =
fgg™th g = [@ 112X f1(9), —Adg; Tt are the generatorg ¥ for the SU(3)
acting on the right of, they have the standard commutation relatigi8 7] = ifiikJ,*.
We thus find that

DD i 00210 &) = =375 D i 002 AT [15. 15, vll0:e). (6.32)

The general wave function for even and odd chiralities can be written as
§"D)1j"; &) J'=(0,0,2,(0,0,05 i=Ni, Ny,
N —N1=3,if j/=(0,0,2) and N, = Ny, if j'=(0,0,0), (6.33)
n DI 8); b = (1/2, (3 20)/2, D;
i =Ni1,N2, Ni— Nz;=0mod3 (6.34)
Here j”, b” are the state vectors for's pairing with j/, b’ as in (6.32) anq}i), n,(]i) eC

and repeated indices are summed. Sindg; anticommutes with™, we can represent the
effect of D on wave functions in terms of the off-diagonal block

0 d (6.35)
dt 0}’ '
acting on
£0 pl)
( :.) i{) (6.36)
My Dpy

The result is the equation of [14] far = 0; [14] has also found the spectrumDf

The zero modes dP can be easily worked out from (6.32). Whgh= (0, 0, 0), i can
be (0, 0) (but not otherwise), and in that cage®? is a constant and is annihilated 531*
Hence, the index db is 1 and the zero mode has even chirality, consistently with [14].

7. Quantization

D acts on a subspace df ® Matig. We can thus conceive of a fuzzy Dirac operafor
which acts on a subspace 4f®R Matig, A being obtained fronpd by restricting “orbital”
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V) IRRs to(n,n), n < N. D is then obtained fron® by projection to this subspace.

D commutes only with the totaBU(3) CasimirJ,.2 and not with orbitalSU(3) Casimir

/:l.z. This causes edge effects distorting the spectrun® dbr those states havin@, n)
near(N, N) which D mixes with(n’, n’), n’ > N. This particular edge phenomenon does
not occur fors? = CP! where orbital angular momentudf commutes with the Dirac
operator. A way to eliminate such problems is suggested by the work of [6—9]. We introduce
the cut-off not on the orbital Casimir, but on thatal Casimir, retaining all states upto the
cut-off. That seems the best strategy as it will give a fuzzy Dirac opebatath a spectrum
exactly that of the continuum operatdr upto the cut-off point, and which has chirality
(chirality I" of D commutes withll.z) and no fermion doubling. This approach is the same
as the method adopted f§7 in [6-9]. ForS2, the edge effect turned up as the absence of
the — E eigenvalue subspace for the maximum total angular momentum when the cut-off
is introduced in orbital angular momentum, and attendant problems with chirality.

D being just a restriction dP, we can continue to use (6.20) in calculation, just remem-
bering the truncation of the spectrum. That means that the analysis in Section 6 can be used
intact. In the final expressions like (6.35) and (6.3@bels the IRR and the Dirac operator
acts in subspace with fixgd So the cut-off can be introduced 6a= N1, N>.

7.1. Coherent states and star products

These have been treated in [9,15,22]. Here we summarize the main points so that we
can outline the relation of wave functions like (6.24) and those based on matrices for fuzzy
physics.

7.1.1. Thecaseof §? ~ CP?

Let us first conside§? = C P! and its fuzzy versions. The algebfiais Maty 1. SU(2)
acts onA on left and right with generatoss- and— L, and orbital angular momentum is
L; = L¥ — LK. The spectrum of?is K(K + 1), K =0, 1,..., 2/. We can find a basis
of matricesTA’j diagonal in£2 and £3 (with eigenvalueM) and standard matrix elements
for £;. A acts on g2/ + 1)-dimensional vector space with the familiar basjs:). TA’j are
orthogonal K (K + 1) andM being eigenvalues af? and£3

(1K, 1K) = Tr 787X = constantx sk dmm- (7.1)

The above suggests that there is a way to regass$ “functions” ons? with angular
momenta cut-off at 2 Such functions are also represented by the linear span of spherical
harmonicsfkm, K < 2[. We want to clarify the relation dfky’s to the matricegl{j in A.

Towards this end, let us introduce the coherent states

lg: 1) = UD ()L, 1) (7.2)

induced from the highest weight vectdr/). Theg — UK (g) is the angular momentum
K IRR of SU(2). Note the identity

g€ @2/29 1) = &' 1). (7.3)
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Itis a theorem [22], that the diagonal matrix elemegtd|a|g; /) completely determine
the operaton. Further(ge©3/29. [|q|ge(@3/29. |y = (g:l]a|g; I) so that(g|a|g) depends
only on

ga;.a,gJr =0 X, lez =1xe s2. (7.4)

In this way, we have the map — C>®(52), a — a, whered(x) = (gla|g). In this map,
the image 01‘T1‘{1< is Ykm after a phase choice

(g 1ITE |g: 1) = Yem(x). (7.5)

For, underg — hg, x — R(h)x, whereh — R(h) is the SU(2) vector representation.
Under this transformation, since

Ykm(R (h)x) = DY (ymw Yiewr (x) (7.6)
and
8 > vmtrfum = D Wywm TE, (7.7)

whereh — D®)(h) is the angular momentuik IRR of SU(2) in a matrix representation,
we have the proportionality of the two sides (7.5) and phase conventions fix the constant of
proportionality.

The mapTA’; — Ykwm is an isomorphism at the level of vector spaces. It can be extended
to the non-commutative algebraby defining a new product oFku's, the star product.
Thus, consideKg; I|TX Tk |g; 7). The functionsYkm and Y n completely determing’
and Tﬁ, and for that reason also this matrix element. Hence, it is the value of a function
Ykm * YU, linear in each factor, at

(g 1T T 1g: 1) = [Yim * Yin] (x). (7.8)

The productx here, the star product, extends by linearity to all functions with angular
momenta< 2/. The resultant algebra is isomorphic to the algebra

The explicit formula for« has been found by Presnajder [9] (see also [15]). The image
of Lya is just—i(x A V)o,a We will use the same symbdl, to denote—i (¥ A V),. The
x product is covariant under tH#J(2) action in the sense that

Lo(@ % b) = (Lo@) % b+ a x (Lob). (7.9)
It depends ot and approaches the commutative produaf &f(52) as! — oo.

Coherent states thus give an intuitive handle on the matrix representation of functions.
But onS?, we also have monopole bundles. Sections of these bundles for Chern atass

spanned by the rotation matricBs, J = |n|. They have the equivariance property
DY) (g€@3/2%) = DY) (9)é". (7.10)
How do we represent them by matrices?
In the first instance, let > 0 and consider the coherent states
gl +n) =U @l +n,0+n), gD =UD@ILI). (7.11)

They span vector spac®s,, andV;. We can consider the linear operators Hém,,, V;)
from V; 1, to V;. They are [2+ 1] x [2(I 4+ n) + 1] matrices in a basis df;,, andV;, and
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haveU ) (g) acting on their left (with generatois’) andU " (g) acting on their right
(with generators—LlR). We can decompose Hawvi,,, V;) under the “orbital” angular
momentum groug/ " @ U+ (with generatorsC, = L. — LX) into the direct sum
@21 (K) with the IRRK having the basig X, with £37X = MTX . As before, we choose
T1{4< so thatZ; follow standard phase conventioﬁ;’; are orthogonal

Tr(TENTTE = constantx sk 8yra- (7.12)
Now consider
{1; 8| Ty 1g: 1 +n). (7.13)

It transforms in precisely the same manner4&) (¢) underg — hgandg — gé(?3/29/2
and hence after an overall normalization,

(I; gITE g1+ n) = D) (o). (7.14)

Thus, HomV,,, V) are fuzzy versions of sections of vector bundles for Chern alas$.
Forn < 0, they are similarly HortV;, V;4,). This result is due to [23] (see also [6-9,14]).
An explicit formulae for the fuzzy version of rotation matrices can be found in [9].

It is interesting that Chern class has a clear meaning even in this matrix model. It is
|V| — |W| for Hom(V, W), where|V| and|W| are dimensions of andW.

There are two (inequivalent) fuzzy algebras acting on KBnW). Maty| := Ay, acts
on the right and Mafy| := A,w, acts on the left, where now a subscript has been introduced
on A. These left and right actions have their own, call themsy| andxy . if a € Ay,
b € Aw anda andb are the corresponding functions, then

bTIIfla — E*lWI Ym *|v| a (7.15)

under the map of HoitV, W) to sections of bundles.
There is also a fuzzy analogue for tensor products of bundles. Thus, we can compose
elements of HortV, W) and Hom(W, X) to get Hom(V, X)

Hom(V, X) = Hom(W, X) ®4,,, Hom(V, W). (7.16)

Its elements ar@S, S € Hom(V, W), T € Hom(W, X). Its Chern class i$V| — | X|. If
f ar1d§ are the representatives dfand S in terms of sections of bundles, th&s —
T % S.

Tensor productg ® I of two vector space$y and > over an algebra& are defined
only if I'1(I) is a right- and leftB module [24]. Hence, HoiW’, X) ® 4y, HOM(V, W)
is defined only ifW = W’. SoT % S is rather different in its properties from the usual tensor
product of bundle sections, in particulfis 7 makes no sense if # X.

We can now comment on the fuzzy form of (5.17). Elsewhere, the Watamura and
co-workers [10,11] and following them [12,13], investigated the Dirac operator as act-
iNgONA ® C2 = A%, A = Maty 1. That led to rather an elaborate formalism because of
the cut-off in orbital angular momentum. So as indicated earlier, it seems more elegant to
cut-off total angular momentum at some valige
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We can now argue such a cut-off leads to the formalism of [5-9] and to supersymmetry.
Thus, letr;/ we € Hom(Vy 11,2, V) with the transformation property

v o)’ U2 (g) = DY) ()T}, (7.17)

nn

Soj <2l+1/2andjo= 2+ 1/2. Then
D), (9) = (g: 1T 1g: 1 +1/2) (7.18)

and an overall constant of proportionality has been set equal to 1 by suitably Sﬁﬂing
The subscript+ indicates helicity (see Eq. (5.8)). _
For helicity+, but for samejo, we have to considef; . € Hom(V;, Vi11/2), with

U(’+1/2)(g)TT,f,U([)(g) D(/)(g)T”J,- (7.19)

This is the formalism of [5-9]. As we have unit&d” andV /2 itis natural to consider
OFP(2, 1) or evenOFP(2, 2) JSY as discovered first by Grosse et al. in the second paper

of [6]. The action of the fuzzy Dirac operatd@ on T,{jE is merely the truncated form of
(5.17)

DTt = —(J)xw2 5072 Tn:p j=2+1/2 (7.20)
Because of the mixing dfand/ + 1/2, we have to reconsider the action of the matrix
algebraA approximatingd = C*(52). Maty;1 acts onT,{'Jr(Tnj_) on the left (right) while
Maty; 2 acts onT, -’QF(T-’ ) on the right (left). So it is best to regard fuzzy functions to act
on left (say) of’T,{+ and right of7;_ as Mag;1. This suggestion is sllghtly different from
that of [5-9], where they regard the fuzzy algebra to beJMaton 7,/, and Mag; 12 on

T, both acting on left. However, our proposal does not generalize to instanton (monopole)
sectors.
We can restore spin parts to fuzzy wave functions. The spin wave functions for helicity

areTl/2 So the two components of the total fuzzy wave functions for helitigre
ZE n:F )\lizr n 6 C A= 1» 2. (721)
The Dirac operatop is given by the truncated version of (5.16)
1/2 1/2
DAN {ZEJ—FT”J_T)\// + Zg”l Tn]+ )L// }
{ZSHT} (J(J))+1/2 1/2] {T 7~ }
> T D e T =2+12 (7.22)
O§f> being the angular momentupnimages of(o, /2).

7.1.2. The case of CP?
Coherent states fdE P2 can be defined using highest weight states. For (RR), we
can pick the highest weight state with= I3 = 0, Y = —2/3, namely thex-quark:
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10,0, —2/3) = 10,0, —2/3; (3, 0)). Then ifg — U9 (g) defines the IRR|g; (3,0)) =
UGB (g)|0,0, —2/3; (3, 0)). Forthe IRR N, 0), we can simply replad®, 0, —2/3; (3, 0))
by its N-fold tensor producf0, 0, —2/3; (3,0)) ® 0, 0, —2/3; (3,0)) ® ...® |0, 0, —2/3;
(3,0)) = 10,0, —2N/3; (N, 0)) and set

lg: (N, 0)) = UN9()|0,0, —5N: (N, 0)). (7.23)

For (0, N), we can use the-quark stateg:; (0, 3)) = U@ (g)|0, 0, +2/3; (0, 3)) and its
tensor product states.

The development of ideas now keep followii§ = CP2. Full details can be found in
[15]. General theory confirms that the map— a from matrices in thgN, 0)[(0, N)]
IRR to functions onCP2, defined bya(¢) = (N, 0); glalg; (N, 0))(@() = ((0, N);
glalg; (O, N))) is one-to-one so that & product ona’s exists. In this map, th&U(3)
generatorg; acting oni become the correspondifiP? SU(3) operators—ifijkéj(a/aék).
We shall use the same symbg] for these operators too. The orbitdl(3) action is
compatible with« in the sense that; (G x b) = (£;a) * b + a * (L;b). Irreducible tensor
operators ofSU(3) are well studied [28]. With their help, fuzzy analoguesizimatrices
can be constructed, as also section&/6f) andU (2) bundles.

The fuzzyC P? Dirac operator is the cut-off version of (6.32). It can be put in a matrix
form as in (6.35) and (6.36). We omit the details: the necessary group theory is already to
be found in [14] while the rest is routine.
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Appendix A. Fuzzy CP? as“fuzzy” algebraic variety

Here we will provide the derivation of Eq. (3.7) and derive therefrom the expressions for
the quadratic Casimir operat6g in (N, 0) and(0, N) representations.

The symmetric representatiod’, 0) of SU(3) that appear in ouf P2 study can be
constructed using three creation operatd?and their adjoints;. We have

[a;.a]] =6, i.j=123. (A1)

For the representatior®, N), we need three more creation operaﬂqTrand their adjoints
bj. We concentrate below aiv, 0), the treatment of0, N) being similar.
The SU(3) generators ard, = att,a, t, = (1/2)A,. They fulfill

[Ag, Ap] = if2C A, (A.2)
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The Hilbert spacé{ v, for (N, 0) is spanned by states of the form
_ tny Tnp Tng _
[n1,n2,n3) = ay"ta,"?a3"|0), ni1+nz2+nz=N,
a;|0y=0, i=1,23. (A.3)

The dimension of this space($/2)(N + 1)(N + 2).
Using the definitioniay. = 2 Tr(r%{¢?, t°}) the left-hand side of (2.6) becomes

dabeAp Ae = 2Tr(t%, 1) Ap A, (A.4)
dape Ap Ac = 265 (111 + tjﬁ(tﬁ)%aLt@nana;tgqaq (A.5)

The similar expression for the quadratic Casitris

+
ApAp = aLt@nanakq}(’la[ (A.6)

Taking advantage of the Fierz identity

Z(t“)ij (") = 3818k — 380 (A7)
o

to reduce the summations over thandc indices, after a somewhat tedious, but straitfor-
ward, computation one gets

1 1
ApAp = Qa,LanaIam — ga,Lama,Ian, (A.8)

T T T
dapcApAe = Ztgﬁ[%al alga;al - %a:,zama;raﬂ — %alaﬂal a; + %alakakaﬂ]. (A.9)

where summation over the repeated indices is assumed.
At this point we have to use the fact that these operators act on the special states that
belong to# v ,0). For the states in (A.3), one has

Y " alailn1. nz, ns) = (n1+ nz + n3)n1, na. n3) = Niny, nz, n3). (A.10)

i

From this and (A.1) we have the value of the quadratic Casifir C2 = (1/3)N2 + N.
Using the fact that?’s are traceless, we find that the right-hand side of (A.9) when acting
on the states frort{ v o) becomes

L N 1
Sincea;raj transforms like(N, 0) ® (0, N), AF also fulfills (A.11). Withg; = AL/

Vv (N2/3) + N, (3.7) follows.

There are identical results for tii@, V) representations. The proofs only involve replac-
ing a;r anda; by b;r andb; in the preceding discussion.
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Appendix B. Why CP? isnot spin

It is a standard result that P? does not admit a spin structure, but does admit a.spin
structure. We plan to explain this result here adapting an argument of Hawking and Pope
[21]. The reasoning shows th&P" for any evernV > 2 is not spin whereas it is spin ¥
is odd.

The obstruction to th€ P2 spin structure comes from non-contractibile two-spheres in
CP2.SinceCP2 ~ U(®)/U((2), 12(CP2) = m[U(2)] = Z. Alsor1(CP?) = {0} so that
Hurewitz’s theorem [25] leads tH2(C P2, Z) = Z. Its mod 2 reduction i/ 2(C P2, Z,) =
Z>. The absence of spin structure means that the tangent bundle is associated with the
non-trivial element o#Z,.

Consider a continuous mapof the squard(s,?) : 0 < s;7 < 1} into SU(3) which
obeys the following conditions (Fig. 1):

g(s,0) =g(0, 1) = g(1,1) = identityl, (B.1)
(s, 1) = dms0atvV3e) (B.2)

Thecurveg : (s, 1) — g(s, 1)isaloopinU (2) = {stability group oft°} not contractible
to identity while staying withirtU (2). It is the generator of1(U (2)) and is associated with
non-abelian’ (2) monopoles [26]. But since;(SU(3) = {0}, g can be defined smoothly
in the entire square.

Now U (2) being the stability group af° is contained in the tangent space gr&mi4)
atef If x = (xy 1 n=1,2,3,4) is atangent vector &0, we can map itto a 2 matrix
M(x) = x4 +iT - X (r; = Pauli matrices) with the reality property (x)* = oM (x)72.
O@4) = [J(2) x V(2)]/Z2 acts onM (x) according taV (x) — th(x)hZ, h; € J(2)
preserving the reality property and the determinantdet) = Zx,’f, and hence induces
anS0(4) transformation onx. U (2) is imbedded in thiSO(4), acting onM (x) as follows:
M(x) — hiM(x)e "0,

The spin grouBU(2) x UJ(2) = {(h1, h2)} is a two-fold cover ofSO(4). The inverse
image ofU (2) in SJ(2) x J(2) is V(2) x U (1), also a two-fold cover ot/ (2). In this
cover the loopg : (s, 1) — g(s, 1) becomes — (€757, @753 |t s no longer a loop,

g(s,1) = explims(\3 + V3)\s))

O (1,1)
t
g0.=11 gL =1
(s,t) =(0,0) — S (1,0)
g(s,0) =1

Fig. 1.
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P v Q
11 111
I
Fig. 2.

but runs from(I, I) to (-1, —I). It is this that obstructs the spin structure, as the following
reasoning encountered in [21] shows.

Let UB) — CP?2 ~ U(R)/U(2) be the maph € UB) — hrgh L = reéy. U(2)
here has generators(i = 1, 2, 3) andig. This map takes the entire boundary of the square
{g(s, 1)} to €9 and the square itself to a two-spheie

Now the tangent space &f of CP? is spanned by the foul8U(3) Lie algebra direc-
tions K*, K0, K°, K~ (in a complex basis). If we writ€ P? as {high~'}, a basis of
tangents (a frame) &P is A,(a = 4,5, 6, 7). Clearly g(s, 1)A,g(s, )1 gives a frame at
g(s, Hrgg(s, 1)1 of CP2. This gives us a rule for transporting this frame (and hence any
frame) smoothly along curves ov8f € CP2. If {(s(t),(r)),0 < t < 1} is a curve on
the square, the transport of the frame along the cgitvér), ¢ (t))Agg(s(t), 1(r))~Lin §2
is g(s(1), 1(1))Aag(s(v), t(r))~L. In this rule, for the three sides I, Il, Ill (see Fig. 2), we
haveg(s, 1)Agg(s, 1)~ = Ag andg(s, H)A.g(s, 1)1 = A, so that we are at° with the
frame held fixed. Along side 1V, we are still ag or £°, but we are rotating,, according
to explins(A3 + v/3hg)} A EXP—ims (3 + v/3rg)}, it is a 2r- rotation of the frame as
varies from 0 to 1.

If spinors can be defined diiP?, this transport of frames will consistently lead to their
transport as well. Thus, along sides |, Il, Ill, we should be able to pick a suitable constant
spinory. But then, along IV, as increases to 1, we will arrive @ with —y as(—1, —1)
of U(2) x (2) flips the sign of a spinor. As we hatdalong Ill, we lose continuity aP
and find that spinors do not exist ferP2.

Itis possible to show that this conclusion is not sensitive to our choice of rule of transport
of frames (that is, connection in the frame bundle).

The spin structure is achieved by introducing an additiobi&ll) connection for spinors
which amounts to adding a hypercharge of magnitude 1. That would give an additional phase
exp(im+/3rgs) along IV and an extra minus sign at= 1 canceling the above unwanted
minus sign. Note that: (1) this connection and extra hypercharge cancels out for frames
which contain a spinor and a complex conjugate spinor; (2) there is no vector bundle with
this extra connection as its existence gives a contradiction just as does the existence of the
spin bundle.

Let us see what all this means f8(3). UnderU (2), at£9, the tangents transform as
K’s andK’s, that is as the IRR$/, Y) = (1/2, 1) and /2, —1). From the wayM (x)
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transforms, we can see thatorresponds tas wherer, /2 areSU(2) generators acting on
the right of M (x).

TheSU(2) x U(2) IRRs of the non-existent spinors are as follows: (i) left-handed spinors:
(1/2, 0y; (ii) right-handed spinors: (0,1/2). The corresponditigY) quantum numbers
are thus: (i) left-handed spinors: (1/2,0); (ii) right-handed spinors: (0,1X@nd1). The
quantum numbers in the spirase follows by adding an additional hypercharge which
we can take to be-1: (1) left-handed spin: (1/2, —1); (2) right-handed spjn: (0, 0)
and(0, —2). These are precisely tHé(2) quantum numbers of the representation space of
tangenty’s in Section 6. TheaU(3) IRRs have to contain thedé(2) IRRs. They are not
symmetric between left- and right-handed spinors.

The spin structures are not unique. Thus, we have the freedom to add additional hy-
percharge 2 (n € Z) to the spin spinors, that is, tensor the spibundle with anyU (1)
bundle. The choice of spirin our text is natural for our Dirac operator.

On general CPN: CPY for all odd N admits a spin structure whereas those for even
N admit only a spip structure [27]. We can understand this result too by pursuing the
preceding arguments.

LetY VD = 1/(N + 1)diag(1, 1,...,1, —N) be theSU(N + 1) “hypercharge". The
previousY is Y®. We can represerf PN = SU(N + 1)/U(N) as{hYV+tDp-1: p ¢
SU(N + 1)}, the stability grougu € SUN + 1) : uyV+Dy,—1 = y(N+1y belngU(N)

ForallN > 1, the square of Figs. 1 and 2 and the rgap(s, t) — g(s,t) € SJUWN + 1)
can be constructed so that it is constant on sides I, Il and Il whilés, 1) — g(s, 1) gives
a generator ofr1 (U (N)). There is obstruction to spin structure if this loop when it acts on
a frame atr VD rotates it by 2, that is acts as the non-contractible looS6f(2N).

Let (g1, g2, . .., gn+1) be the “quarks” oBU(N + 1). The hypercharg& ™) of SU(N)
acts as the generatbf™) = (1/N) (1,1, ..., —(N —1), 0) on these quarks. We can choose
the loopg : (s, 1) — g(s, 1) according to

g(s, 1) = i(2rs/NY(NYV) e—i(2m/N)(N+1)Y<N+1>

10 . ) 0
010 . 0

=0 . . 1 0o |. (B.3)
0 . . ei2ts 0

0 0O 0 d2ns

The tangent vectors &V +1 transform likeg ¢+ andg¥+tV¢® (1 < i < N). So
underg(s, 1),

G gD g2ms g N+ - < N 1

GG+ _, gans g D

GINHFD G, gri2ms gN+D () < v 1

q(NJrl)q(l) '47”q_(N+l)q(i), i=N. (B.4)

Eachi gives a plane in # dimensions and each factd?® in the first two lines gives a
27 -rotation.
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Thus, we have a product 6NV — 1) + 2 = (N + 1) 2z -rotations. ForN odd, they are
contractible inSO(2N), and forN even, they are not, showing the result we were after.
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