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Abstract

Regularization of quantum field theories (QFTs) can be achieved by quantizing the underlying
manifold (spacetime or spatial slice) thereby replacing it by a non-commutative matrix model or
a “fuzzy manifold”. Such discretization by quantization is remarkably successful in preserving
symmetries and topological features, and altogether overcoming the fermion-doubling problem. In
this paper, we report on our work on applying this procedure of the four-dimensionalCP 2 and its
QFTs.CP 2 is not spin, but spinc. Its Dirac operator has many unique features. They are explained
and their fuzzy versions are described. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

We can find few fundamental physical models amenable to exact treatment. Approxima-
tion methods like perturbation theory are necessary and are part of our physics culture.

Among the important approximation methods for quantum field theories (QFTs) are
strong coupling methods based on lattice discretization of underlying spacetime or perhaps
its time-slice. They are among the rare effective approaches for the study of confinement
in QCD and for non-perturbative regularization of QFTs. They enjoyed much popularity in
their early days and have retained their good reputation for addressing certain fundamental
problems.

One feature of naive lattice discretizations however can be criticized. They do not retain
the symmetries of the exact theory except in some rough sense. A related feature is that
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topology and differential geometry of the underlying manifolds are treated only indirectly,
by limiting the couplings to “nearest neighbors”. Thus, lattice points are generally manipu-
lated like a trivial topological set, with a point being both open and closed. The upshot is that
these models have no rigorous representation of topological defects and lumps like vortices,
solitons and monopoles. The complexities in the ingenious solutions for the discrete QCD
θ -term [1] illustrate such limitations. There do exist radical attempts to overcome these lim-
itations using partially ordered sets [2], but their potentials are yet to be adequately studied.

A new approach to discretization, inspired by non-commutative geometry (NCG), is
being developed since a few years [4–14]. The key remark here is that when the underlying
spacetime or spatial cut can be treated as a phase space and quantized, with a parameterĥ

assuming the role of�, the emergent quantum space is fuzzy, and the number of independent
states per (“classical”) unit volume becomes finite. We have known this result after Planck
and Bose introduced such an ultraviolet cut-off and quantum physics later justified it. A
“fuzzy” manifold is ultraviolet finite, and if the parent manifold is compact too, supports
only finitely many independent states. The continuum limit is the semi-classicalĥ → 0
limit. This unconventional discretization of classical topology is not at all equivalent to the
naive one, and we shall see that it does significantly overcome the previous criticisms.

There are other reasons also to pay attention to fuzzy spaces, be they spacetimes or spatial
cuts. There is much interest among string theorists in matrix models and in describing
D-branes using matrices. Fuzzy spaces lead to matrix models too and their ability to reflect
topology better than elsewhere should therefore evoke our curiosity. They let us devise new
sorts of discrete models and are interesting from that perspective. In addition, it has now
been discovered that when open strings end on D-branes which are symplectic manifolds,
then the branes can [16] become fuzzy, in this way one comes across fuzzy tori,CPN and
many such spaces in string physics.

The central idea behind fuzzy spaces is discretization by quantization. It does not always
work. An obvious limitation is that the parent manifold has to be even dimensional. (See
however [15], for constructing fuzzyRP3/Z2 and other non-symplectic manifolds, even or
odd.) If it is not, it has no chance of being a phase space. But that is not all. Successful
use of fuzzy spaces for QFTs requires good fuzzy versions of the Laplacian, Dirac equa-
tion, chirality operator and so forth, and their incorporation can make the entire enterprise
complicated. The torusT 2 is compact, admits a symplectic structure and on quantization
becomes fuzzy, or a non-commutative torus. It supports a finite number of states if the
symplectic form satisfies the Dirac quantization condition. But it is impossible to introduce
suitable derivations without escalating the formalism to infinite dimensions [17].

But we do find a family of classical manifolds elegantly escaping these limitations. They
are the co-adjoint orbits of Lie groups. For semi-simple Lie groups, they are the same
as adjoint orbits. It is a theorem that these orbits are symplectic [18]. They can often be
quantized when the symplectic forms satisfy the Dirac quantization condition. The resultant
fuzzy spaces are described by linear operators on irreducible representations (IRRs) of the
group. For compact orbits, the latter are finite-dimensional. In addition, the elements of
the Lie algebra define natural derivations, and that helps to find Laplacian and the Dirac
operator. We can even define chirality with no fermion doubling and represent monopoles
and instantons (see [4–9] and the first three papers in [13]). These orbits therefore are
altogether well-adapted for QFTs.
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Let us give examples of these orbits.

• S2: This is the orbit ofSU(2) through the Pauli matrixσ3 or any of its multiplesλ σ3 (λ �=
0). It is the set{λgσ3g

−1 : g ∈ SU(2)}. The symplectic form isj d cosθ ∧ dφ with θ, φ
being the usualS2 coordinates [19]. Quantization gives the spinj SU(2) representations.

• CP 2: CP 2 is of particular interest being of dimension four. It is the orbit ofSU(3)
through the hyperchargeY = 1/3 diag(1,1,−2) (or its multiples):

CP 2 : {gYg−1 : g ∈ SU(3)}. (1.1)

The associated representations are symmetric products of 3’s or3̄’s (see Section 2).
• SU(3)/[U(1) × U(1)]: This six-dimensional manifold is the orbit ofSU(3) through
λ3 = diag(1,−1,0) and its multiples. These orbits give all the IRRs containing a zero
hypercharge state.

In the literature, there are several studies of the fuzzy physics ofCP 1 = S2 [3–15], while
there is also a rigorous and beautiful treatment ofCP 2 by Grosse and Strohmaier [14]. The
present work develops an alternative formulation forCP 2. It is close to earlier treatments
of S2 [12,13] and seems to generalize to other quantizable orbits. It is eventually equivalent
to that of [14] as we show, so that the first study ofCP 2 is of that reference.

Throughout this paper, we treatCP 2 as Euclidean spacetime even though the possibility
of treating it as spacial slice is also available.

Section 2 explains the basic properties ofCP 2. We quantize it in Section 3 to produce the
fuzzyCP 2 (some technical details necessary to quantization are provided in the Appendix
A). Functional integral quantization of tensorial fields can also be done as we show in
Section 4 (although topological considerations would prefer a more elaborate approach;
see especially the first and last papers of [13]). In non-commutative geometry (NCG), a
central role is assumed by the (massless) Dirac operator. Section 5 reviews it forS2 =
CP 1 while Section 6 studies our approach to it in detail forCP 2. Analysis shows its
equivalence to the Dirac–Kähler operator [14].CP 2 is not a spin, but a spinc manifold, and
that has exotic consequences for theSU(3) spectrum: left- and right-chiral modes transform
differently underSU(3). Section 7 studies the fuzzy analogue of the Dirac operator. This
work is greatly facilitated by coherent states and star (�) products. The necessary material,
contained in [9,15], is reviewed and used to discretize the continuum material here for both
S2 = CP 1 andCP 2. Incidentally the� product is particularly useful for formulating fuzzy
analogues of important continuum quantities like correlation functions.
CP 2 is a surface inR8 described by an algebraic equation. Appendix A establishes the

fuzzy version of this equation and in addition useful identities amongSU(3) generators.
Appendix B is pedagogical and explains whyCP 2 is not spin and why theSU(3) spectrum

of the spinc Dirac operator has exotic features.

2. On CP2

CP 2 is a Kähler manifold describable in different ways. Thus, as mentioned before it is
the orbit ofSU(3) through the hypercharge operatorY or its multiples (the groupSU(3) has
eight generatorsti which satisfy [ti , tj ] = ifijktk; the hypercharge isY = (2/√3)t8; in the3
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representation the generators are(1/2)λi , where theλi are the eight Gell–Mann matrices).
As the stability group ofY isU(2)

U(2) =
{(
u 0

0 detu−1

)
∈ SU(3)

}
, (2.1)

we have that

CP 2 = SU(3)/U(2). (2.2)

As its name reveals, it is also a projective complex space or the space ofC1 subspaces in
C3. If ξ ∈ C3−{0}, a point ofCP 2 is the equivalence class〈ξ〉 = 〈λξ〉 for all λ ∈ C1−{0}.
Choosingλ = (∑ |ξi |2

)−1/2
, we see thatCP 2 = {〈ξ〉 = 〈ξeiθ 〉: (∑ |ξi |2

) = 1}. Hence,

CP 2 = S5/U(1). (2.3)

In (2.1), we can first quotientSU(3) by SU(2). That is just the aboveS5. That is because
SU(3) acts onC3 and transitively on its sphereS5 = {ζ ∈ C3 :

∑ |ζi |2 = 1}. At (1,0,0) ∈
S5, the stability group isSU(2) showing the result. In this way, we see that

CP 2 = [SU(3)/SU(2)]/U(1) = S5/U(1). (2.4)

The eight Gell–Mann matrices form a basis for the real vector space of traceless hermitian
matrices{∑ ξiλi, ξ = (ξ1, . . . , ξ8) ∈ R8}. SoCP 2 is a sub-manifold ofR8. There is a
beautiful algebraic equation for this sub-manifold. It is this: letdijk be the totally symmetric
SU(3)-invariant tensor defined by

λiλj = 2
3 δij + ( dijk + ifijk) λk (2.5)

Then

ξ ∈ CP 2 ⇔ dijkξiξj = constant× ξk. (2.6)

A pleasant manner to demonstrate this result is as follows. The symmetricSU(3) invariant
productχ, η→ χ∨η, (χ∨η)i := dijkχj ηk can be rewritten in terms of traceless hermitian
matricesM,N as

M ∨N = 1
2{M,N} − 1

6Tr({M,N}), (2.7)

where

M =
∑
χjλj , N =

∑
ηjλj . (2.8)

For this product,M = δλ8 fulfills

M ∨M = − δ√
3
M (2.9)

This relation is valid for points on the entire orbit throughδλ8 by SU(3) invariance of the∨
product.

Conversely, relation (2.9) implies thatM is in the orbit ofλ8. For we can diagonalizeM
by anSU(3) transformationg while keeping (2.9). After scaling the diagonalMD = gMg−1
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to∆ to reduce−(δ/√3) to 1, we have∆ ∨∆ = ∆,∆ = diag(a, b,−a,−b). Comparing
the difference of the first two rows on both sides, we geta− b = (a+ b)(a− b). If a = b,
then∆ = 3aY. If a �= b, thena+b = 1. Comparing the first row, we geta2−a−2= 0, or
a = 2 or−1. So∆ = diag(2,−1,−1) or∆ = diag(−1,2,−1). Both become proportional
to Y after Weyl reflections, establishing the result.

3. Quantizing CP2

A particular approach to quantizing co-adjoint orbits was developed many years ago in
[19]. According to that method we obtain fuzzyCP 2 quantizing the Lagrangian

L = iN̄Tr(Yg(t)−1ġ(t)), g(t) ∈ SU(3), N̄ = constant, Y = λ8√
3

(3.1)

A point ξ(t) ∈ CP 2 is related tog(t) by ξ(t)iλi = g(t)Yg−1(t), while onCP 2 the
symplectic form isiN̄dTrYg−1dg = −iN̄Tr[Y g−1dg ∧ g−1dg]. Writing g = eiλiθ i/2,
for a Hamiltonian description we may take as phase space (local) coordinates theθi and
their conjugatesπi = (∂L/∂θ̇ i), but the Lagrangian being of first order the latter are all
constraints. To simplify the constraints we defineEij by g−1dg = (λj /2i)Ejidθ

i , and use
the variables(iR = −πj (E−1)ji, which have Poisson brackets

{ΛiR, g} = gλi
2i
, {ΛiR,ΛjR} = fijkΛkR (3.2)

and are therefore the generators ofSU(3) transformations ong(t) acting on the right. In
terms of these variables the constraintsπi − iN̄Tr(Yg−1(∂g/∂θi)) ≈ 0 become

(iR + N̄√
3
δi,8 ≈ 0 (3.3)

They are second class fori = 4, . . . ,7, first class fori = 1,2,3,8, corresponding to the
fact that ifg(t) → g(t)eiλiθ(t)/2, i = 1,2,3,8, thenL → L − (N̄/√3)θ̇δi,8. Thus, for
the generatorYR for right hypercharge we haveYR ≈ −(2/3)N̄ , and the right “isospin”
generatorsIαR, α = 1,2,3 vanish,IαR ≈ 0. We can make a first class set (classically
equivalent to all the constraints) by adding to these constraints complex combinations of
the second class constraints:YR ≈ −(2/3)N̄, IαR ≈ 0 and forN̄ ≥ 0,Λ4R − iΛ5R ≈
Λ6R − iΛ7R ≈ 0 and forN̄ ≤ 0,Λ4R + iΛ5R ≈ Λ6R + iΛ7R ≈ 0.

These constraints can be realized on functions onSU(3). As isospin singlets have hy-
percharge in integral multiples of 2/3, we find thatN̄ ∈ Z. With N̄ fixed accordingly, the
constraints together mean that for right action, we have highest weight isospin singlet states
of hypercharge−(2/3)N̄ .

An IRR of SU(3) is labeled by(n1, n2), ni ∈ N. It comes from the symmetric product

of n1 3’s andn2 3∗’s: a tensorT
i1,...,in1
j1,...,jn2

for (n1, n2) hasn1 upper indices,n2 lower in-

dices and is traceless,T
i1i2,...,in1
i1j2,...,jn2

= 0. Within an IRR, the orthonormal basis can be written

as|(n1, n2), I
2, I3, Y 〉 whereI2, I3 andY are square of isospin, its third component and

hypercharge.
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Let g → U(n1,n2)(g) define the representation(n1, n2) of SU(3). Then the functions
given by〈(n1, n2), I

2, I3, Y |U(n1,n2)(g)|(n1, n2),0,0,−(2/3)N̄〉 fulfill the constraints. By
the Peter–Weyl theorem, their linear span∑

ξ
(n1,n2)

I2,I3,Y
〈(n1, n2), I

2, I3, Y |U(n1,n2)(g)|(n1, n2),0,0,−2
3N̄〉 (3.4)

gives all the functions of interest.
If N̄ = N ≥ 0, that requires that(n1, n2) = (N,0). These are just the symmetric

products ofN 3’s. If N̄ = −N ≤ 0, (n1, n2) = (0, N) or we get the symmetric product of
N 3∗’s. The representations that we get by quantizing the Lagrangian (3.1) are thus(N,0)
or (0, N).

ForCP 2, there are coordinate functionsξ̂i , whereξ̂i (ξ) = ξi . The
∑
ξ̂i ξ̂i is a constant

function which we can take to beI, the function with value one. On quantization,ξ̂i become
the operators constant×ΛLi which we also denote aŝξi . Since

∑
ΛLi Λ

L
i = C2I, and

C2 = (1/3)N2+N in (N,0) or (0, N) (see Appendix A), their exact form is

ξ̂i =
ΛLi√

1
3N

2+N
,

∑
ξ̂i ξ̂i = I. (3.5)

So

[ξ̂i , ξ̂j ] = i√
1
3N

2+N
fijkξ̂k (3.6)

and they commute in the largeN limit.
It is a remarkable fact that̂ξi fulfill (2.6) for any N if ξ̂i ’s belong to(N,0) or (0, N).

A proof that uses the creation–annihilation operator techniques of Grosse and co-workers
[6–9] is given in Appendix A. The result is a “fuzzy” analog of the defining relation (2.6)

dijkξ̂i ξ̂j = (N/3)+ (1/2)√
(1/3)N2+N

× ξ̂k. (3.7)

The algebraA generated bŷξi is what substitutes for the algebra of functionsA =
C∞(CP 2). By Burnside’s theorem [20], it is the full matrix algebra in the IRR. FuzzyCP 2

is just the algebraA.
The following point, emphasized by [14] is noteworthy. Iff ∈ A, it has the partial-wave

expansion

f (ξ) =
∑
f n
I2,I3,Y

〈(n1, n2), I
2, I3, Y |U(n1,n2)(g)|(n1, n2),0,0,0〉,

ξαλα := gλ8 g
−1. (3.8)

The ket|(n1, n2),0,0,0〉 exists only ifn1 = n2 so that the sum in (3.8) can be restricted
to n1 = n2. If F ∈ A, thenF too has an expansion like (3.8), where the series is cut-off
at n = N . That is because of the following. TheSU(3) Lie algebrasu(3) has two actions
onF : F → LLαF = (αF andF → −LRα F = −FΛα. The derivationF → adLαF =
LLαF − LRα F = [Λα, F ] is the action which annihilatesI and corresponds to thesu(3)
action onCP 2. AsF transforms as(N,0) (for N̄ ≥ 0 say) forΛLα and as(0, N) for−ΛRα ,
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A decomposes into direct sum of IRRs:(N,0)⊗(0, N) = ⊕Nn=0(n, n). If 〈(n, n), I2, I3, Y 〉
furnishes a basis for(n, n), thenF =∑N

0 F
n
I2,I3,Y

|(n, n), I2, I3, Y 〉. Identifying this basis

with the one in (3.8) forn ≤ N , we see thatF transforms like a function onCP 2 with a
terminating partial-wave expansion.

A more precise statement is as follows [14]. We can put a scalar product onA using the
Haar measure onSU(3) and completeA into a Hilbert spaceH. OnH, elementsF ofA act
as linear operators by pointwise multiplication. LetH(N,0) be the subspace ofH carrying
the IRR(N,0) andP(N,0) : H → H(N,0) the corresponding projector. Then we have a
mapA → P(N,0)AP(N,0); F → P(N,0) F P(N,0) which is ontoA. Thus, elements ofA
approximate functions in a good sense.

4. Fuzzy scalar fields

Here we briefly indicate a certain fuzzy version of the free scalar field action. It is very
natural and a generalization of fuzzyCP 1 action proposed earlier [5–11]. Still certain less
obvious actions based on cyclic cohomology have been proposed [13,15], they have distinct
topological advantages and correct continuum limits as well.

The operatorsadLi = LLi − LRi correspond to theSU(3) generators for functions on
CP 2. A Laplacian for fuzzyCP 2 is thusadL2

i . A scalar fieldφ is a polynomial in the fuzzy
coordinate functionŝξi , soφ is just a matrix inA. The Euclidean action forφ is

S(φ) = constant× Tr(φ+adL2
i φ), adLiφ = [Li, φ]. (4.1)

Let λK be the eigenvalue of the continuum operator for the IRR(K,K); [14] gives

λK = 2K(K + 1). (4.2)

If N is the maximumK for the fuzzy space, thenadL2
i has the spectrum{λ0, λ1, . . . , λN },

it is just the cut-off spectrum of the continuum Laplacian.

5. The Dirac operator on S2 �CP1

This section is a warm up for what follows onCP 2 next. It contains a partial-wave
analysis for the eigenstates of theS2 Dirac operatorD which can be generalized toCP 2.

Let

S2 = {x ∈ R3 :
∑
x2
α = 1}, (5.1)

andx̂ be the coordinate functions:x̂α(x) = xα.
Then the Dirac operator is

D = σαPαβ Jβ, Pαβ = δαβ − x̂αx̂β, Jβ = Lβ + σβ
2
,

Lα = −i(x̂ ∧ �∇)α.
(5.2)

P projects the Pauli matricesσα to their tangent space componentsσαPαβ . Lβ andJβ are
orbital and total angular momenta, respectively.
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If f ∈ A = C∞(S2), it has the partial-wave expansion

f (x) =
∑
kM

f kM 〈kM|D(k)(g)|k0〉 (5.3)

whereD(k) : g → D(k)(g) define the angular momentumk IRR of SU(2) andgσ3 g
−1 =

σ · x. The action ofLα on it is specified by

Lα〈kM|D(k)(g)|k0〉 = −〈kM|J (k)α D(k)(g)|k0〉 (5.4)

whereJ (k)α are angular momentumk SU(2)-generators.
D acts onA ⊗ C2 ≡ A2 = {(a1/2, a−1/2) : aλ ∈ C∞(S2)}. It anticommutes with the

chirality operator

Γ = σ · x̂. (5.5)

We now find the eigenfunctions ofΓ .
Following (5.3), we can define a functionxα onSU(2) as follows. Forg ∈ SU(2), xα(g)

is defined bygσ3g
+ = σ ·x(g). Theσ · x̂ is now the chirality operator onA2 defined in the

following way. The action ofσ ·x̂ onD(k) is specified by [σ ·x̂D(1/2)](g) = σ ·x(g)D(1/2)(g).
We will henceforth often omitg in writing x(g). SinceD(1/2)(g) = g, it follows that helicity
±1 eigenfunctions ofσ · x̂ = D(1/2)σ3D

(1/2) − 1 are

D
(1/2)
·,±1/2 = (D(1/2)1/2,±1/2,D

(1/2)
−1/2,±1/2). (5.6)

Here,D(1/2)·,±1/2 ≡ ĝ·,±1/2, ĝij being functions onSU(2): ĝij(g) = gij. They have the equiv-
ariance property

D
(1/2)
·,±1/2(ge

iσ3θ ) = D(1/2)·,±1/2(g)e
±iθ . (5.7)

Unlike (5.7), elements ofA2 and hence too its chirality±1 subspaces(1± σ · x̂/2)A2

are invariant underg → geiσ3θ . The expansion of elements of these subspaces using the
aboveD’s must thus have anotherD in each term transforming with the opposite phase to
that in (5.7). Accounting for this fact, we can write fora ∈ A2,

a = a+ + a−, a± = (a±1/2, a±−1/2) ∈
1± σ · x̂

2
A2,

a±λ =
∑
n,j

ξ
j±
n D

(j)

n,∓1/2D
(1/2)
λ,±1/2, ξ

j±
n ∈ C. (5.8)

Now orbital angular momentumLβ is not defined on the individual factors in (5.8). We
must lift it to the operatorJ Lβ which acts onD(j) andD(1/2) in such a manner that̂x

transforms like a vector;J Lβ areSU(2) generators acting by left translation

[eiθβJ Lβ D(1/2)ij ](g) = D(1/2)ij (e−iθβσβ2g) = [e−iθβσβ2g]ij. (5.9)

We now reinterpretJβ as

Jβ = J Lβ +
σβ

2
. (5.10)
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Because of the transformation rule (5.9), we find,

JβD
(1/2)
·,± = 0. (5.11)

So

DD(j)n,∓1/2D
(1/2)
.,±1/2 = [J Lβ D

(j)

n,∓1/2][σαPαβD
(1/2)
·,±1/2]. (5.12)

Further simplification can be achieved by writing

σαPαβ = [ 1
2σ · x̂, [ 1

2σ · x̂, σβ ]] = D(1/2)[ 1
2σ3, [ 1

2σ3, σα]]D
(1/2)−1D

(1)
βα . (5.13)

and noticing that−D(1)βα J Lβ = J Rα areSU(2) generators acting in the right ofg

[eiθαJ Rα f ](g) = f [geiθασα2] (5.14)

(f : SU(2)→ C being a function onSU(2)). Putting this in (5.12)

DD(j)n,∓1/2D
(1/2)
·,±1/2 = −[D(j)

n,n′(J
(j)
α )n′,∓1/2]D(1/2)·,µ′ [ 1

2σ3, [ 1
2σ3, σα]]µ′,±1/2 (5.15)

The summation onα can be restricted to± corresponding to raising and lowering operators
as theα = 3 term vanishes in the last factor.

It follows that:

(Da)λ =−
∑
j,n

ξ
j+
n D

(j)

n,1/2(J
(j)
+ )1/2,−1/2D

1/2
λ,−1/2

+
∑
j,n

ξ
j−
n D

(j)

n,−1/2(J
(j)
− )−1/2,+1/2D

(1/2)
λ,+1/2

 (5.16)

which can also be written in the “Dirac–Kähler” form [14]

D

∑ ξj+n D(j)n,−1/2∑
ξ
j−
n D

(j)

n,+1/2

 =
 0 (J

(j)
− )−1/2,+1/2

(J
(j)
+ )+1/2,−1/2 0

∑ ξj+n D(j)n,+1/2∑
ξ
j−
n D

(j)

n,−1/2


(5.17)

The eigenvalues ofD areε(j+(1/2))with ε = ±1, each with degeneracy(2j+1), while the
corresponding eigenfunctions haveξjε±n = cjεn 〈j,∓(1/2); (1/2),±(1/2)|j − (1/2)ε,0〉.
Explicitly,

(ajε)λ =
∑
n

c
jε
n 〈j, n; 1

2
, λ|D(g)|j − ε

2
,0〉 (5.18)

where additional superscripts have been added to the eigenfunction.
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6. The Dirac operator on CP2

CP 2 is not spin, but spinc [14,21]. This fact introduces serious differences between the
CP 2 Dirac operator and the Dirac operator for a spin manifold such asCP 1 discussed last.

TheCP 2 Dirac operator and its fuzzy version have been treated in [14]. Here we develop
an alternative approach which seems capable of generalization to other coset spaces.

Elsewhere [15], we plan to treat tensor analysis onCPN and its fuzzy versions in the
language of projective modules. Here we will summarize just some points relevant for us.
The next section will give their fuzzy versions.

6.1. The projective module for tangent bundle and its complex structure

The generatorsad λi in the adjoint representationAd : g → Ad g of SU(3) = {g} have
matrix elements(adλi)jk = −2ifijk, wherefijk is totally antisymmetric. We have the identity
[λi, λj ] = 2ifijkλk and a similar relation forad λi . As hypercharge commutes with itself and
isospin generators, it follows thatf8ij = 0, if i or j = 1,2,3 or 8. Thus, the tangent vectors
to CP 2 at ξ0 = (0, . . . ,0,1), or equivalently atλ8 = λiξ0

i , areadλj , j = 4,5,6,7. The
directionsadλj , j = 1,2,3,8 are normal. At any other pointξiλi = gλ8g

−1 ∈ CP 2, the

normals accordingly areAd g(ad λj )Ad g−1 := ξ (j)i adλi , j = 1,2,3,8, whereξ (8)i = ξi .
That means thatfiklξkξ

(j)
l = 0. The four orthogonal directionsAd g(ad λj )Ad g−1 (j =

4,5,6,7) in the trace norm span the tangent space.
The eigenvalues ofadY (Y = (1/√3)λ8), and hence also of(1/

√
3)ξiadλi are±1,0

corresponding to the mesonsK, K̄, η0 and �π in the flavor octet terminology. Ifχ(+) is an
eigenvector for eigenvalue+1, (1/

√
3)(ξiadλi)χ(+) = χ(+), thenξ (j)i χ

(+)
i = (1/√3)ξ (j)k

(ξ
(8)
l adλl)kiχ

(+)
i = 0 from above wherej = 1,2,3,8. Hence,χ(+) is a tangent atξ . So is

χ(−) for eigenvalue−1. Hence,χ(±) span the tangent space and the null space ofξiadλi
spans the space of normals.

We can now present sections of the tangent bundleTCP 2 as a projective module. Let
A8 = A⊗ C8 = {(ξ̂1, . . . , ξ̂8)}.

1
3(ξ̂iadλi)

2 = P (6.1)

is a projector andPA8 is seen to consist of the sections of tangent bundle from the above
remarks.

The complex structure onCP 2 can be thought of as a splitting of the tangent space
TξCP

2 as the direct sumT (+)ξ CP
2+ T (−)ξ CP

2 for all ξ ∈ CP 2 in a smooth manner . The

tensorJ of complex analysis atξ is then±i onT (±)ξ CP
2.

In the language of projective modules , we must thus splitP as the sum of two orthogonal
projectorsP(±). The tensorJ is±i onP(±)A8, that is,J = i(P(+) −P(−)). Hence, also
JP = PJ = J .

SU(3)-covariance suggests the choice ofP(±)A8 as eigenspaces of(1/
√

3)ξ̂iadλi for
eigenvalues±1. Hence,

P(±) = 1
2
√

3
ξ̂iadλi(

1√
3
ξ̂jadλj ± 1). (6.2)
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As adλi is antisymmetric, we have that

P(+)T = P(−), J T = −J . (6.3)

FromJ , we can also write the Levi–Civita symbol in anSU(3)-covariant way. It is

εijkl = 3J[ijJkl], [ ] : antisymmetrization. (6.4)

6.2. The gamma matrices

SinceCP 2 is a sub-manifold ofR8 , it is natural to start from the Clifford algebra onR8.
Let its basis be the 16× 16 matricesγ̂i (i = 1,2, . . . ,8) with the relations

{γ̂i , γ̂j } = 2δij, γ̂
†
i = γ̂i (6.5)

The γ -matrices which will occur in the Dirac operator are not these, rather they will be
16× 16γ -matricesγµ with the same relations

{γi, γj } = 2δij, γ
†
i = γi (6.6)

but which act by left multiplication on the algebra generated byγ̂i , that is on the algebra
Mat16 of 16× 16 matricesM. Thus,

γiM = γ̂iM. (6.7)

The matrices of Mat16 have a scalar product(M,N) = Tr (M†N) for whichγ †
i = γi .

TheCP 2 γ ’s are the tangent projectionsγiPij. There are only four of them at each
ξ which are linearly independent. We have to find a four-dimension subspace of Mat16
at eachξ on which they can act. If we fail in that, we will end up with more than one
fermion.

We first find this subspace atξ0. At ξ0, define the fermionic creation–annihilation oper-
ators

â
†
1 = 1

2(γ̂4+ iγ̂5), â1 = 1
2(γ̂4− iγ̂5), â

†
2 = 1

2(γ̂6+ iγ̂7), â2 = 1
2(γ̂6− iγ̂7).

(6.8)

â†
α transform as(K+,K0), âα as(K−, K̄0). Let

|0〉 = â1â2, |α〉 = â†
α|0〉 (α = 1,2), |3〉 = â†

1â
†
2|0〉. (6.9)

They span a four-dimensional space. Theγα (4≤ α ≤ 7) act irreducibly on this space. If

a
†
1 = 1

2(γ4+ iγ5), a
†
2 = 1

2(γ6+ iγ7) (6.10)

and their adjoints define their creation–annihilation operators,|0〉 is their vacuum state.
For an appropriate subspace at other points ofCP 2, we use the fact thatSU(3) acts

transitively onCP 2. Thus, we can regardξ ∈ CP 2 as a function onSU(3) with valueξ(g)
atg via the relationgλ8g

−1 = λiξi(g). Thenξ0 = ξ(e), e = identity.
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Now the algebra ofSU(3) can be realized usingγi , the generators being

tci = 1
4i fijkγjγk (6.11)

Their 16-dimensional representation can be split into 8⊕ 8 using the projectorsP± =
(1± γ̂9)/2 , γ̂9 = γ̂1γ̂2, . . . , γ̂8. Theγi transform as an 8under the actionγi → [tcj , γi ] by
derivation

[tcj , γi ] := ad tj γi = ifjilγl. (6.12)

LetT (g)be the image ofg in theSU(3) representation given by (6.12).T (g)can act on Mat16
by conjugation according toAd T (g)M = T (g)MT(g)−1. Thead ti are the infinitesimal
generators for the actionAd T (g) of SU(3).

The four-dimensional vector space atg = e and its basis can be labelled asV (e) and
{|ν; e〉, ν = 0, α,3 : |ν; e〉 = |ν〉}. The vector space and its basis atg are then

V (g) = Ad T (g)V (e) = T (g)V (e)T (g)−1,

|ν; g〉 = Ad T (g)|ν; e〉 = T (g)|ν; e〉T (g)−1. (6.13)

It is on this vector space thatγiPij(ξ(g)) acts by left-multiplication.
On the vector spaceV (e), the U(2) subgroup ofSU(3) acts by conjugation. From

the particle physics interpretation ofâ+α , we see thatV (e) decomposes into the direct
sum

(I = 0, Y = −2)⊕ (1
2,−1)⊕ (0,0). (6.14)

To see theSU(3) representation content of|ν, g〉, let us first focus on|0; g〉. |0; e〉 ≡ |0〉
is bilinear and antisymmetric in theγ ’s and hasI = 0, Y = −2. The actionT (g) preserves
the number ofγ ’s. Thus, itsSU(3)-orbit is contained in the vector space spanned by the
antisymmetric product of twoγ ’s, that is,γij = (1/2)(γiγj − γjγi). This vector space
transforms as 10⊕ 1̄0⊕ 8. Only 10contains anI = 0, Y = −2 vector, namelyΩ−, thus
|0; g〉 ∈ 10= (N1 = 3, N2 = 0).

A more explicit formula can be written. Let|(3,0); (I, I3, Y ); e〉 be the basis of vectors,
which are linear inγij and transforms as 10. We have:|(3,0); (0,0,−2); e〉 ≡ |0; e〉.
Then

|0; g〉 = Ad T (g) |0; e〉 = |(3,0); (I, I3, Y ); e〉D(3,0)(I,I3,Y );(0,0,−2)(g) (6.15)

whereD(3,0) : g → D(3,0)(g) is the IRR 10of SU(3) and the basis is labelled by
(I, I3, Y ).

We can analyze theSU(3) content and write an explicit formula for every|ν; g〉, 1 |α; e〉
(α = 1,2) hasγi ’s andγijk’s where we mean byγijkl the totally antisymmetrized product
of γi , γj , γk, . . . , γl . Theγi transforms as an 8or (N1 = 1, N2 = 1) while γijk transforms
as 27⊕ 10⊕ 1̄0⊕ 8⊕ 1. We can take linear combination ofγi andγijk to form two new
8’s such that the 8part of |α; e〉 is in a single 8. Also |α; e〉 hasI = 1/2, Y = −1 and
such a vector occurs only in 8, 10and 27. Thus,|α; g〉 (α = 1,2) transforms as the direct sum

1 The analysis of theSU(3) representation content ofV (g) is due to Brian Dolan.
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8⊕ 10⊕ 27; calculating explicitely the coefficients we find

|α; g〉 =
√

3
5 |(1,1); (I, I3, Y ); e〉D(1,1)(I,I3,Y ),(1/2,(3−2α)/2,−1)(g)

− 1
2|(3,0); (I, I3, Y ); e〉D(3,0)(I,I3,Y ),(1/2,(3−2α)/2,−1)(g)

+
√

3
20|(2,2); (I, I3, Y ); e〉D(2,2)(I,I3,Y ),(1/2,(3−2α)/2,−1)(g) (6.16)

There remains|3; e〉 with I = Y = 0. It is a linear combination of a constant,γij, and
γijkl. (i) The constant part transforms as anSU(3)-singlet; (ii)γij was treated above; (iii)γijkl
is 27⊕ 8. U(2) singlets withI = Y = 0 are contained only inSU(3) singlet 8and 27so
that|3; g〉 transforms as 1⊕ 8⊕ 27, the 8being a mixture of 8’s from γij, γijkl. Calculating
the coefficients explicitely, we find,

|3; g〉 =−1
2|0; (0,0,0); e〉 +

√
3
5 |(1,1); (I, I3, Y ); e〉D(1,1)(I,I3,Y ),(0,0,0)

(g)

+
√

3
20 |(2,2); (I, I3, Y ); e〉D(2,2)(I,I3,Y ),(0,0,0)

(g). (6.17)

6.3. The Dirac operator

We require of theCP 2 Dirac operatorD that it is linear in derivatives and anticommutes
with the chirality operatorΓ

Γ := − 1
4!εijklγiγj γkγl. (6.18)

At ξ = ξ0, Γ = −γ4γ5γ6γ7 and is+1 on |0; e〉 and|3; e〉, and−1 on |α; e〉(α = 1,2).
Hence,Γ = +1 on|0; g〉, |3; g〉 and−1 on|α; g〉 for all g. The former have even chirality
and the latter have odd chirality.

Now γiPij anticommutes withΓ , while theSU(3) generators

Ji = Li + ad tci , Li = −ifijkξ̂j
∂

∂ξ̂k
(6.19)

commute withΓ . Hence,

D = γiPijJj (6.20)

anticommutes withΓ ,

{Γ,D} = 0, (6.21)

and is a good choice for the Dirac operator.
D acts onA⊗Mat16. But there are only four tangent gammas at eachξ(g), so we have

to reduceA⊗Mat16 to V (g) (in a n appropriate sense) at eachξ(g). We can achieve this
reduction as follows. The functionŝξ are defined according to

ξ̂ (g) = T (g) tc8 T −1(g). (6.22)

where the notation means thatT andT −1 are to be evaluated atg. Hence, ifu ∈ U(2),
the stability group oftc8, ξ̂ (gu) = ξ̂ (g). This means thatA ⊗ Mat16 consists of sections
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of the trivial U(2)-bundle overCP 2. The same is the case for its left- and right-chiral
projections

Ψ± = 1± Γ
2
A⊗Mat16. (6.23)

But that is not the case for|0; g〉 and |α; g〉. Underg → g u, |0; g〉 transforms as an
SU(2) singlet withY = −2 and|α; g〉 transforms as anSU(2) doublet with hypercharge
Y = −1.

Let ĝ denote the matrix of functions onSU(3) with ĝij(g) = gij, g ∈ SU(3) (ĝ is just a
simplified notation forD(1,0)). We regard elements ofA⊗Mat16 as functions ofg, invariant
under the substitutiong → g u. Accordingly, let us also introduce the vectors|a; ĝ〉; a =
0, α,3 which atg are the vectors|a; ĝ(g)〉 = |a; g〉. Note that on a functionf on SU(3),
the left- and right-actions ofh ∈ SU(3) aref → hL,Rf , where(hLf )(g) = f (h−1g) and
(hRf )(g) = f (gh).

Now consider, in the case of|0, g〉, the wave functionsD(N1,N2)
(I,I3Y )(0,0,2)

. They exist only if
N2 = N1+ 3. The combination

D
(N,N+3)
(I,I3,Y )(0,0,2)

|0, ĝ〉 (6.24)

is invariant underg→ gu at eachg and can form constituents of a basis for the expansion
of functions inA⊗Mat16.

The remaining elements of a basis can be found in the same manner, being

1√
2
D
(N1,N2)
(I,I3,Y )(1/2,−m,1)|m̃, ĝ〉; N2−N1 = 0 or 3, D

(N,N)
(I,I3,Y )(0,0,0)

|3, ĝ〉 (6.25)

where1̃/2,−1̃/2 stand forα = 1,2 andm is summed over.
There is a subtlety we encounter at this point. We also came across it forS2. “Orbital”

SU(3)momentumLα does not act on the individual factors in (6.24) and (6.25), which are
functions onSU(3) and not justCP 2. It is thus necessary to lift them to operatorsĴ Li which
act onĝ in such a manner that when (6.22) is used,ξ̂ transform underSU(3) in the way
desired:̂ξ → hLξ̂ . Thus,Ĵ Li are generators ofSU(3)L, the left-regular representation, and
the Dirac equation is to be reinterpreted withJj replaced by

Jj = Ĵ Lj + ad tcj . (6.26)

Restricted toA⊗Mat16, (6.26) is the same as (6.20).
The|ν; g〉 isT (g)|ν; e〉T (g)−1 so|ν; ĝ〉 isT |ν; e〉T −1. Now(hLT )(g) = T (h−1g). That

is,hL(T |ν; e〉T −1)(g) = T (h−1)T (g)|ν; e〉 T (g)−1T (h), which has the infinitesimal form
Ĵ Lj (T |ν; e〉T −1)(g) = −ad tcj (T (g)|ν; e〉T (g)−1). We conclude that

Jj |ν, ĝ〉 = 0. (6.27)

The expression forP is in (6.1). Using commutation relations, we can write

γjPji = 4
3[tck ξ̂k, [t

c
j ξ̂j , γi ]] . (6.28)

Now Ad T γj = T γjT −1 = γkAd ĝkj, whereAd ĝ(g) = Ad g representsg in the octet
representation, it is real and orthogonal. Hence,

γjPji = 4
3{[Ad T ][ tc8, [t

c
8, γj ]][ Ad T −1]}Ad ĝij. (6.29)
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Since|ν, ĝ〉 = Ad T |ν; e〉, Ad T −1|ν; ĝ〉 = |ν; e〉; [tc8, [t
c
8, γi ]] consists only of tangent

spaceγ ’s at e. The action of{.} on |ν; ĝ〉 is thus

Ad T [tc8, [t
c
8, γi ]]Ad T −1|ν; ĝ〉 = Ad T {[tc8, [tc8, γi ]] |ν; e〉}. (6.30)

The action ofD on typical basis vectors like (6.24) follows:

DD(N,N+3)
(I,I3,Y )(0,0,2)

|0; ĝ〉 = 4
3{AdĝijJiD

(N,N+3)
(I,I3,Y )(0,0,2)

}Ad T [tc8, [t
c
8, γj ]] |0; e〉. (6.31)

The term in braces also has a considerable simplification. Since(hLf )(g) = f (h−1g)=
f (g(g−1h−1g)) = [(ĝ−1ĥ−1ĝ)Rf ](g), −AdĝijJ Li are the generatorsJ Rλ for the SU(3)
acting on the right ofg, they have the standard commutation relations [J Ri ,J

R
j ] = ifijkJ Rk .

We thus find that

DD(N,N+3)
(I,I3,Y )(0,0,2)

|0; ĝ〉 = −4
3{J Ri D(N,N+3)

(I,I3,Y )(0,0,2)
}Ad T [tc8, [t

c
8, γi ]] |0; e〉. (6.32)

The general wave function for even and odd chiralities can be written as

ξ
(i)
j D

(i)

jj′ |j ′′; ĝ〉; j ′ = (0,0,2), (0,0,0); i = N1, N2,

N2−N1 = 3, if j ′ = (0,0,2) and N2 = N1, if j ′ = (0,0,0), (6.33)

η
(i)
b D

(i)

bb′ |b′′; ĝ〉; b′ = (1/2, (3− 2α)/2,1);
i = N1, N2, N1−N2 = 0 mod 3. (6.34)

Herej ′′, b′′ are the state vectors forγ ’s pairing withj ′, b′ as in (6.32) andξ (i)j , η(i)b ∈ C
and repeated indices are summed. SinceγjPji anticommutes withΓ , we can represent the
effect ofD on wave functions in terms of the off-diagonal block(

0 d

d+ 0

)
, (6.35)

acting on ξ (i)j D(i)jj′

η
(i)
b D

(i)

bb′′

 (6.36)

The result is the equation of [14] form = 0; [14] has also found the spectrum ofD.
The zero modes ofD can be easily worked out from (6.32). Whenj ′ = (0,0,0), i can

be(0,0) (but not otherwise), and in that case,D(0,0) is a constant and is annihilated bŷJ Ri .
Hence, the index ofD is 1 and the zero mode has even chirality, consistently with [14].

7. Quantization

D acts on a subspace ofA⊗Mat16. We can thus conceive of a fuzzy Dirac operatorD
which acts on a subspace ofA⊗Mat16, A being obtained fromA by restricting “orbital”
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SU(3) IRRs to(n, n), n ≤ N . D is then obtained fromD by projection to this subspace.
D commutes only with the totalSU(3) CasimirJ 2

i and not with orbitalSU(3) Casimir
L2
i . This causes edge effects distorting the spectrum ofD for those states having(n, n)

near(N,N) whichD mixes with(n′, n′), n′ ≥ N . This particular edge phenomenon does
not occur forS2 = CP 1 where orbital angular momentumL2

α commutes with the Dirac
operator. A way to eliminate such problems is suggested by the work of [6–9]. We introduce
the cut-off not on the orbital Casimir, but on thetotal Casimir, retaining all states upto the
cut-off. That seems the best strategy as it will give a fuzzy Dirac operatorD with a spectrum
exactly that of the continuum operatorD upto the cut-off point, and which has chirality
(chirality Γ of D commutes withJ 2

i ) and no fermion doubling. This approach is the same
as the method adopted forS2 in [6–9]. ForS2, the edge effect turned up as the absence of
the−E eigenvalue subspace for the maximum total angular momentum when the cut-off
is introduced in orbital angular momentum, and attendant problems with chirality.
D being just a restriction ofD, we can continue to use (6.20) in calculation, just remem-

bering the truncation of the spectrum. That means that the analysis in Section 6 can be used
intact. In the final expressions like (6.35) and (6.36),i labels the IRR and the Dirac operator
acts in subspace with fixedi. So the cut-off can be introduced oni = N1, N2.

7.1. Coherent states and star products

These have been treated in [9,15,22]. Here we summarize the main points so that we
can outline the relation of wave functions like (6.24) and those based on matrices for fuzzy
physics.

7.1.1. The case of S2 % CP 1

Let us first considerS2 = CP 1 and its fuzzy versions. The algebraA is Mat2l+1. SU(2)
acts onA on left and right with generatorsLLi and−LRi , and orbital angular momentum is
Li = LLi − LRi . The spectrum ofL2 isK(K + 1), K = 0,1, . . . ,2l. We can find a basis
of matricesT KM diagonal inL2 andL3 (with eigenvalueM) and standard matrix elements
for Li .A acts on a(2l+ 1)-dimensional vector space with the familiar basis|l, m〉. T KM are
orthogonal,K(K + 1) andM being eigenvalues ofL2 andL3

(T KM , T
K ′
M ′ ) := Tr T K†

M T
K ′
M ′ = constant× δKK′δMM′ . (7.1)

The above suggests that there is a way to regardA as “functions” onS2 with angular
momenta cut-off at 2l. Such functions are also represented by the linear span of spherical
harmonicsYKM,K ≤ 2l. We want to clarify the relation ofYKM’s to the matricesT KM in A.

Towards this end, let us introduce the coherent states

|g; l〉 = U(l)(g)|l, l〉 (7.2)

induced from the highest weight vector|l; l〉. Theg→ U(K)(g) is the angular momentum
K IRR of SU(2). Note the identity

|gei(σ3/2)θ ; l〉 = eilθ |g; l〉. (7.3)
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It is a theorem [22], that the diagonal matrix elements〈g; l|a|g; l〉 completely determine
the operatora. Further〈gei(σ3/2)θ ; l|a|gei(σ3/2)θ ; l〉 = 〈g; l|a|g; l〉 so that〈g|a|g〉 depends
only on

gσ3g
+ = σ · x,

∑
x2
i = 1; x ∈ S2. (7.4)

In this way, we have the mapA→ C∞(S2), a → ã, whereã(x) = 〈g|a|g〉. In this map,
the image ofT KM is YKM after a phase choice

〈g; l|T KM |g; l〉 = YKM(x). (7.5)

For, underg → hg , x → R(h)x, whereh → R(h) is theSU(2) vector representation.
Under this transformation, since

YKM(R(h)x) = D(K)(h)MM′YKM′(x) (7.6)

and

T KM → U(h)−1T KM U(h) = D(K)(h)MM′T KM ′ , (7.7)

whereh→ D(K)(h) is the angular momentumK IRR of SU(2) in a matrix representation,
we have the proportionality of the two sides (7.5) and phase conventions fix the constant of
proportionality.

The mapT KM → YKM is an isomorphism at the level of vector spaces. It can be extended
to the non-commutative algebraA by defining a new product onYKM’s, the star product.
Thus, consider〈g; l|T KM T LN |g; l〉. The functionsYKM andYLN completely determineT KM
andT LN , and for that reason also this matrix element. Hence, it is the value of a function
YKM ∗ YLN, linear in each factor, atx

〈g; l|T KM T LN |g; l〉 = [YKM ∗ YLN](x). (7.8)

The product∗ here, the star product, extends by linearity to all functions with angular
momenta≤ 2l. The resultant algebra is isomorphic to the algebraA.

The explicit formula for∗ has been found by Prešnajder [9] (see also [15]). The image
of Lαa is just−i(�x ∧ �∇)αã. We will use the same symbolLα to denote−i(�x ∧ �∇)α. The
∗ product is covariant under theSU(2) action in the sense that

Lα(ã ∗ b̃) = (Lαã) ∗ b̃ + ã ∗ (Lαb̃). (7.9)

It depends onl and approaches the commutative product ofC∞(S2) asl→∞.
Coherent states thus give an intuitive handle on the matrix representation of functions.

But onS2, we also have monopole bundles. Sections of these bundles for Chern classn are
spanned by the rotation matricesD(j)mn , j ≥ |n|. They have the equivariance property

D(j)mn (ge
i(σ3/2)θ ) = D(j)mn (g)e

inθ . (7.10)

How do we represent them by matrices?
In the first instance, letn ≥ 0 and consider the coherent states

|g; l + n〉 = U(l+n)(g)|l + n, l + n〉, |g; l〉 = U(l)(g)|l, l〉. (7.11)

They span vector spacesVl+n andVl . We can consider the linear operators Hom(Vl+n, Vl)
fromVl+n toVl . They are [2l + 1]× [2(l + n)+ 1] matrices in a basis ofVl+n andVl , and
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haveU(l)(g) acting on their left (with generatorsLLi ) andU(l+n)(g) acting on their right
(with generators−LRi ). We can decompose Hom(Vl+n, Vl) under the “orbital” angular
momentum groupU(l) ⊗ U(l+n) (with generatorsLα = LLα − LRα ) into the direct sum
⊕2l+n
K=n(K)with the IRRK having the basisT KM , withL3T

K
M = MTKM . As before, we choose

T KM so thatLi follow standard phase conventions.T KM are orthogonal

Tr(T K
′

M ′ )
†T KM = constant× δK ′KδM ′M. (7.12)

Now consider

〈l; g|T KM |g; l + n〉. (7.13)

It transforms in precisely the same manner asD(K)Mn (g) underg→ hg andg→ gei(σ3/2)θ/2

and hence after an overall normalization,

〈l; g|T KM |g; l + n〉 = D(K)Mn (g). (7.14)

Thus, Hom(Vl+n, Vl) are fuzzy versions of sections of vector bundles for Chern classn ≥ 0.
Forn < 0, they are similarly Hom(Vl, Vl+|n|). This result is due to [23] (see also [6–9,14]).
An explicit formulae for the fuzzy version of rotation matrices can be found in [9].

It is interesting that Chern class has a clear meaning even in this matrix model. It is
|V | − |W | for Hom(V ,W), where|V | and|W | are dimensions ofV andW .

There are two (inequivalent) fuzzy algebras acting on Hom(V ,W). Mat|V | := A|V | acts
on the right and Mat|W | := A|W | acts on the left, where now a subscript has been introduced
onA. These left and right actions have their own∗’s, call them∗|V | and∗|W |: if a ∈ AV ,
b ∈ AW andã andb̃ are the corresponding functions, then

bTKMa→ b̃ ∗|W | YKM ∗|V | ã (7.15)

under the map of Hom(V ,W) to sections of bundles.
There is also a fuzzy analogue for tensor products of bundles. Thus, we can compose

elements of Hom(V ,W) and Hom(W,X) to get Hom(V ,X)

Hom(V ,X) = Hom(W,X)⊗A|W | Hom(V ,W). (7.16)

Its elements areTS, S ∈ Hom(V ,W), T ∈ Hom(W,X). Its Chern class is|V | − |X|. If
T̃ and S̃ are the representatives ofT andS in terms of sections of bundles, thenTS →
T̃ ∗ S̃.

Tensor productsΓ1⊗ Γ2 of two vector spacesΓ1 andΓ2 over an algebraB are defined
only if Γ1(Γ2) is a right- and left-B module [24]. Hence, Hom(W ′, X)⊗A|W | Hom(V ,W)

is defined only ifW = W ′. SoT̃ ∗ S̃ is rather different in its properties from the usual tensor
product of bundle sections, in particularS̃ ∗ T̃ makes no sense ifV �= X.

We can now comment on the fuzzy form of (5.17). Elsewhere, the Watamura and
co-workers [10,11] and following them [12,13], investigated the Dirac operator as act-
ing onA⊗ C2 = A2, A = Mat2l+1. That led to rather an elaborate formalism because of
the cut-off in orbital angular momentum. So as indicated earlier, it seems more elegant to
cut-off total angular momentum at some valuej0.
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We can now argue such a cut-off leads to the formalism of [5–9] and to supersymmetry.
Thus, letT jn+ ∈ Hom(Vl+1/2, Vl) with the transformation property

U(l)(g)†T
j
n+U

(l+1/2)(g) = D(j)nn′ (g)T
j

n′+ (7.17)

Soj ≤ 2l + 1/2 andj0 = 2l + 1/2. Then

D
j
n+(g) = 〈g; l|T jn+|g; l + 1/2〉 (7.18)

and an overall constant of proportionality has been set equal to 1 by suitably scalingT
j
n+.

The subscript+ indicates helicity (see Eq. (5.8)).
For helicity+, but for samej0, we have to considerT jn− ∈ Hom(Vl, Vl+1/2), with

U(l+1/2)(g)†T
j
n−U

(l)(g) = D(j)nn′ (g)T
j

n′−. (7.19)

This is the formalism of [5–9]. As we have unitedV (l) andV (l+1/2), it is natural to consider
OSp(2,1) or evenOSp(2,2) SUSY as discovered first by Grosse et al. in the second paper
of [6]. The action of the fuzzy Dirac operatorD on T jn± is merely the truncated form of
(5.17)

DTn± = −(J (j)± )±(1/2),∓(1/2)T jn∓, j ≤ 2l + 1/2. (7.20)

Because of the mixing ofl andl + 1/2, we have to reconsider the action of the matrix
algebraA approximatingA = C∞(S2). Mat2l+1 acts onT jn+(T

j
n−) on the left (right) while

Mat2l+2 acts onT jn+(T
j
n−) on the right (left). So it is best to regard fuzzy functions to act

on left (say) ofT jn+ and right ofT jn− as Mat2l+1. This suggestion is slightly different from

that of [5–9], where they regard the fuzzy algebra to be Mat2l+1 on T jn+ and Mat2l+2 on

T
j
n−, both acting on left. However, our proposal does not generalize to instanton (monopole)

sectors.
We can restore spin parts to fuzzy wave functions. The spin wave functions for helicity±

areT 1/2
m± . So the two components of the total fuzzy wave functions for helicity± are∑
ξ
j±
n T

j
n∓T

1/2
λ± , ξ

j±
n ∈ C, λ = 1,2. (7.21)

The Dirac operatorD is given by the truncated version of (5.16)

Dλλ′
{∑

ξ
j+
n T

j
n−T

1/2
λ′+ +

∑
ξ
j−
n T

j
n+T

1/2
λ′−
}
m

= −
{∑

ξ
j+
n T

j
n+(J

(j)
+ )+1/2,−1/2

} {
T

1/2
λ−
}

−
{∑

ξ
j−
n T

j
n−(J

(j)
− )−1/2,+1/2

} {
T

1/2
λ+
}
, j ≤ 2l + 1/2, (7.22)

J
(j)
α being the angular momentumj images of(σα/2).

7.1.2. The case of CP 2

Coherent states forCP 2 can be defined using highest weight states. For IRR(3,0), we
can pick the highest weight state withI = I3 = 0, Y = −2/3, namely theλ-quark:
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|0,0,−2/3〉 ≡ |0,0,−2/3; (3,0)〉. Then ifg → U(3,0)(g) defines the IRR,|g; (3,0)〉 =
U(3,0)(g)|0,0,−2/3; (3,0)〉. For the IRR(N,0), we can simply replace|0,0,−2/3; (3,0)〉
by itsN -fold tensor product|0,0,−2/3; (3,0)〉⊗ |0,0,−2/3; (3,0)〉⊗ . . .⊗|0,0,−2/3;
(3,0)〉 = |0,0,−2N/3; (N,0)〉 and set

|g; (N,0)〉 = U(N,0)(g)|0,0,−2
3N; (N,0)〉. (7.23)

For (0, N), we can use thēλ-quark state|g; (0,3)〉 = U(0,N)(g)|0,0,+2/3; (0,3)〉 and its
tensor product states.

The development of ideas now keep followingS2 = CP 1. Full details can be found in
[15]. General theory confirms that the mapa → ã from matrices in the(N,0)[(0, N)]
IRR to functions onCP 2, defined byã(ξ) = 〈(N,0); g|a|g; (N,0)〉(ã(ξ) = 〈(0, N);
g|a|g; (0, N)〉) is one-to-one so that a∗ product onã’s exists. In this map, theSU(3)
generatorsLi acting onã become the correspondingCP 2 SU(3) operators−ifijkξ̂j (∂/∂ξ̂k).
We shall use the same symbolLi for these operators too. The orbitalSU(3) action is
compatible with∗ in the sense thatLi (ã ∗ b̃) = (Li ã) ∗ b̃ + ã ∗ (Li b̃). Irreducible tensor
operators ofSU(3) are well studied [28]. With their help, fuzzy analogues ofD-matrices
can be constructed, as also sections ofU(1) andU(2) bundles.

The fuzzyCP 2 Dirac operator is the cut-off version of (6.32). It can be put in a matrix
form as in (6.35) and (6.36). We omit the details: the necessary group theory is already to
be found in [14] while the rest is routine.
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Appendix A. Fuzzy CP2 as “fuzzy” algebraic variety

Here we will provide the derivation of Eq. (3.7) and derive therefrom the expressions for
the quadratic Casimir operatorC2 in (N,0) and(0, N) representations.

The symmetric representations(N,0) of SU(3) that appear in ourCP 2 study can be
constructed using three creation operatorsa†

i and their adjointsai . We have

[ai, a
†
j ] = δij, i, j = 1,2,3. (A.1)

For the representations(0, N), we need three more creation operatorsb†
i and their adjoints

bj . We concentrate below on(N,0), the treatment of(0, N) being similar.
TheSU(3) generators areΛa = a†taa, ta = (1/2)λa . They fulfill

[Λa,Λb] = if abcΛc. (A.2)
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The Hilbert spaceH(N,0) for (N,0) is spanned by states of the form

|n1, n2, n3〉 = a†
1
n1a

†
2
n2a

†
3
n3|0〉, n1+ n2+ n3 = N,

ai |0〉 = 0, i = 1,2,3. (A.3)

The dimension of this space is(1/2)(N + 1)(N + 2).
Using the definitiondabc = 2 Tr(ta{tb, tc}) the left-hand side of (2.6) becomes

dabcΛbΛc = 2 Tr(ta{tb, tc})ΛbΛc (A.4)

dabcΛbΛc = 2taij (t
b
jkt
c
ki + tcjktbki)

1
4a

†
mt
b
mnana

†
pt
c
pqaq (A.5)

The similar expression for the quadratic CasimirC2 is

ΛbΛb = a†
mt
b
mnana

†
k t
b
klal (A.6)

Taking advantage of the Fierz identity∑
α

(tα)ij (t
α)kl = 1

2δilδjk − 1
6δijδkl (A.7)

to reduce the summations over theb andc indices, after a somewhat tedious, but straitfor-
ward, computation one gets

ΛbΛb = 1
2a

†
mana

†
nam − 1

6a
†
mama

†
nan, (A.8)

dabcΛbΛc = 2taαβ [ 1
4a

†
l aβa

†
αal − 1

6a
†
mama

†
αaβ − 1

6a
†
αaβa

†
l al + 1

4a
†
αaka

†
kaβ ]. (A.9)

where summation over the repeated indices is assumed.
At this point we have to use the fact that these operators act on the special states that

belong toH(N,0). For the states in (A.3), one has∑
i

a
†
i ai |n1, n2, n3〉 = (n1+ n2+ n3)|n1, n2, n3〉 = N |n1, n2, n3〉. (A.10)

From this and (A.1) we have the value of the quadratic CasimirC2 : C2 = (1/3)N2 + N .
Using the fact thatta ’s are traceless, we find that the right-hand side of (A.9) when acting
on the states fromH(N,0) becomes

dabcΛaΛb = 2taαβ

[
N

6
+ 1

4

]
a†
αaβ =

(
N

3
+ 1

2

)
Λa. (A.11)

Sincea†
i aj transforms like(N,0) ⊗ (0, N), ΛLi also fulfills (A.11). With ξ̂i = ΛLi /√

(N2/3)+N , (3.7) follows.
There are identical results for the(0, N) representations. The proofs only involve replac-

ing a†
i andaj by b†

i andbj in the preceding discussion.
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Appendix B. Why CP2 is not spin

It is a standard result thatCP 2 does not admit a spin structure, but does admit a spinc

structure. We plan to explain this result here adapting an argument of Hawking and Pope
[21]. The reasoning shows thatCPN for any evenN ≥ 2 is not spin whereas it is spin ifN
is odd.

The obstruction to theCP 2 spin structure comes from non-contractibile two-spheres in
CP 2. SinceCP 2 % SU(3)/U(2),π2(CP

2) = π1[U(2)] = Z. Alsoπ1(CP
2) = {0} so that

Hurewitz’s theorem [25] leads toH 2(CP 2,Z) = Z. Its mod 2 reduction isH 2(CP 2,Z2) =
Z2. The absence of spin structure means that the tangent bundle is associated with the
non-trivial element ofZ2.

Consider a continuous mapg of the square{(s, t) : 0 ≤ s; t ≤ 1} into SU(3) which
obeys the following conditions (Fig. 1):

g(s,0) = g(0, t) = g(1, t) = identity1, (B.1)

g(s,1) = eiπs(λ3+
√

3λ8). (B.2)

The curveg : (s,1)→ g(s,1) is a loop inU(2) = {stability group ofξ0} not contractible
to identity while staying withinU(2). It is the generator ofπ1(U(2)) and is associated with
non-abelianU(2) monopoles [26]. But sinceπ1(SU(3) = {0}, g can be defined smoothly
in the entire square.

NowU(2) being the stability group ofξ0 is contained in the tangent space groupSO(4)
atξ0. If x = (xµ : µ = 1,2,3,4) is a tangent vector atξ0, we can map it to a 2× 2 matrix
M(x) = x4 + i �τ · �x (τi = Pauli matrices) with the reality propertyM(x)∗ = τ2M(x)τ2.
SO(4) = [SU(2)×SU(2)]/Z2 acts onM(x) according toM(x)→ h1M(x)h

†
2, hi ∈ SU(2)

preserving the reality property and the determinant detM(x) =∑ x2
µ, and hence induces

anSO(4) transformation onx.U(2) is imbedded in thisSO(4), acting onM(x) as follows:
M(x)→ h1M(x)e−iτ3θ .

The spin groupSU(2) × SU(2) = {(h1, h2)} is a two-fold cover ofSO(4). The inverse
image ofU(2) in SU(2) × SU(2) is SU(2) × U(1), also a two-fold cover ofU(2). In this
cover the loopg : (s,1) → g(s,1) becomess → (eiπsτ3,eiπsτ3). It is no longer a loop,

Fig. 1.
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Fig. 2.

but runs from(I, I) to (−I,−I). It is this that obstructs the spin structure, as the following
reasoning encountered in [21] shows.

Let SU(3) → CP 2 % SU(3)/U(2) be the maph ∈ SU(3) → hλ8h
−1 = λαξα. U(2)

here has generatorsλi(i = 1,2,3) andλ8. This map takes the entire boundary of the square
{g(s, t)} to ξ0 and the square itself to a two-sphereS2.

Now the tangent space atξ0 of CP 2 is spanned by the fourSU(3) Lie algebra direc-
tionsK+,K0, K̄0,K− (in a complex basis). If we writeCP 2 as {hλ8h

−1}, a basis of
tangents (a frame) atξ0 is λa(a = 4,5,6,7). Clearlyg(s, t)λag(s, t)−1 gives a frame at
g(s, t)λ8g(s, t)

−1 of CP 2. This gives us a rule for transporting this frame (and hence any
frame) smoothly along curves overS2 ∈ CP 2. If {(s(τ ), t (τ )),0 ≤ τ ≤ 1} is a curve on
the square, the transport of the frame along the curveg(s(τ ), t (τ ))λ8g(s(τ ), t (τ ))

−1 in S2

is g(s(τ ), t (τ ))λag(s(τ ), t (τ ))−1. In this rule, for the three sides I, II, III (see Fig. 2), we
haveg(s, t)λ8g(s, t)

−1 = λ8 andg(s, t)λag(s, t)−1 = λa , so that we are atξ0 with the
frame held fixed. Along side IV, we are still atλ8 or ξ0, but we are rotatingλa according
to exp{iπs(λ3 +

√
3λ8)} λa exp{−iπs(λ3 +

√
3λ8)}, it is a 2π - rotation of the frame ass

varies from 0 to 1.
If spinors can be defined onCP 2, this transport of frames will consistently lead to their

transport as well. Thus, along sides I, II, III, we should be able to pick a suitable constant
spinorψ . But then, along IV, ass increases to 1, we will arrive atQ with −ψ as(−1,−1)
of SU(2)× SU(2) flips the sign of a spinor. As we hadψ along III, we lose continuity atP
and find that spinors do not exist forCP 2.

It is possible to show that this conclusion is not sensitive to our choice of rule of transport
of frames (that is, connection in the frame bundle).

The spinc structure is achieved by introducing an additionalU(1) connection for spinors
which amounts to adding a hypercharge of magnitude 1. That would give an additional phase
exp(iπ

√
3λ8s) along IV and an extra minus sign ats = 1 canceling the above unwanted

minus sign. Note that: (1) this connection and extra hypercharge cancels out for frames
which contain a spinor and a complex conjugate spinor; (2) there is no vector bundle with
this extra connection as its existence gives a contradiction just as does the existence of the
spin bundle.

Let us see what all this means forSU(3). UnderU(2), at ξ0, the tangents transform as
K ’s and K̄ ’s, that is as the IRRs(I, Y ) = (1/2,1) and 1/2,−1). From the wayM(x)
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transforms, we can see thatY corresponds toτ3 whereτα/2 areSU(2) generators acting on
the right ofM(x).

TheSU(2)×SU(2) IRRs of the non-existent spinors are as follows: (i) left-handed spinors:
(1/2,0); (ii) right-handed spinors: (0,1/2). The corresponding(I, Y ) quantum numbers
are thus: (i) left-handed spinors: (1/2,0); (ii) right-handed spinors: (0,1) and(0,−1). The
quantum numbers in the spinc case follows by adding an additional hypercharge which
we can take to be−1: (1) left-handed spinc : (1/2,−1); (2) right-handed spinc : (0,0)
and(0,−2). These are precisely theU(2) quantum numbers of the representation space of
tangentγ ’s in Section 6. TheSU(3) IRRs have to contain theseU(2) IRRs. They are not
symmetric between left- and right-handed spinors.

The spinc structures are not unique. Thus, we have the freedom to add additional hy-
percharge 2n (n ∈ Z) to the spinc spinors, that is, tensor the spinc bundle with anyU(1)
bundle. The choice of spinc in our text is natural for our Dirac operator.

On general CPN : CPN for all oddN admits a spin structure whereas those for even
N admit only a spinc structure [27]. We can understand this result too by pursuing the
preceding arguments.

Let Y (N+1) = 1/(N + 1)diag(1,1, . . . ,1,−N) be theSU(N + 1) “hypercharge”. The
previousY is Y (3). We can representCPN = SU(N + 1)/U(N) as{hY(N+1)h−1 : h ∈
SU(N + 1)}, the stability group{u ∈ SU(N + 1) : uY(N+1)u−1 = Y (N+1)} beingU(N).

For allN ≥ 1, the square of Figs. 1 and 2 and the mapg : (s, t)→ g(s, t) ∈ SU(N + 1)
can be constructed so that it is constant on sides I, II and III whileg : (s,1)→ g(s,1) gives
a generator ofπ1(U(N)). There is obstruction to spin structure if this loop when it acts on
a frame atY (N+1) rotates it by 2π , that is acts as the non-contractible loop ofSO(2N).

Let (q1, q2, . . . , qN+1) be the “quarks” ofSU(N + 1). The hyperchargeY (N) of SU(N)
acts as the generatorȲ (N) = (1/N) (1,1, . . . ,−(N−1),0) on these quarks. We can choose
the loopg : (s,1)→ g(s,1) according to

g(s,1)= ei(2πs/N)(NȲ (N)) e−i(2πs/N)(N+1)Y (N+1)

=


1 0 . . 0

0 1 0 . 0

0 . . 1 0

0 . . e−i2πs 0

0 0 0 0 ei2πs

 . (B.3)

The tangent vectors atY (N+1) transform likeq̄(i)q(N+1) andq̄(N+1)q(i)(1 ≤ i ≤ N). So
underg(s,1),

q̄(i)q(N+1)→ ei2πs q̄(i)q(N+1), i ≤ N − 1,

q̄(i)q(N+1)→ ei4πs q̄(i)q(N+1), i = N,
q̄(N+1)q(i)→ e−i2πs q̄(N+1)q(i), i ≤ N − 1,

q̄(N+1)q(i)→ e−i4πs q̄(N+1)q(i), i = N. (B.4)

Eachi gives a plane in 2N dimensions and each factor ei2πs in the first two lines gives a
2π -rotation.
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Thus, we have a product of(N − 1) + 2 = (N + 1) 2π -rotations. ForN odd, they are
contractible inSO(2N), and forN even, they are not, showing the result we were after.
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[16] C. Klimčik, P. Severa, Open strins and dielectric-branes in WZNW model, Nucl. Phys. B383 (1996) 281.
hep-th/9609112;
A.Y. Alekseev, V. Schomerus, Dielectric-branes in WZW model.hep-th/98112193;
H. Garcia-Compean, J.F. Plebanski, Dielectric-branes on group manifolds and deformation quantization.
hep-th/9907183;
K. Gawedzki, Conformal field theory: a case study.hep-th/9904145;
R.C. Myers, Dielectric-branes, JHEP 9912 (1999) 022.hep-th/9910053;
S.P. Trivedi, S. Vaidya, Fuzzy cosets and their gravity duals, JHEP 0009 (2000) 41.hep-th/0007011;
S.R. Das, S.P. Trivedi, S. Vaidya, Magnetic moments of branes and giant gravitons, JHEP 0010 (2000) 037.
hep-th/0008203.

[17] A. Connes, Non-Commutative Geometry, Academic Press, London, 1994;
G. Landi, An Introduction to Non-Commutative Spaces and their Geometries, Springer, Berlin, 1997.
hep-th/9701078.

[18] A.A. Kirillov, Encyclopedia of Mathematical Sciences, Vol. 4, p. 230;
B. Kostant, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970, p. 87.

[19] A.P. Balachandran, G. Marmo, B.-S. Skagerstam, A. Stern, Gauge Theories and Fiber Bundles, Springer,
Berlin, and Classical Topology and Quantum States, World Scientific, Singapore, 1991.

[20] H. Boerner, Representations of Groups, North-Holland, Amsterdam, 1963, p. 69.
[21] S.W. Hawking, C.N. Pope, Generalized spin structures in quantum gravity, Phys. Lett. 73B (1978) 42;

I.M. Benn, B.P. Dolan, R.W. Tucker, Generalized spin structures, Phys. Lett. 150B (12) (1985) 100.
[22] J.R. Klauder, B.-S. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics, World

Scientific, Singapore, 1985;
A.M. Perelomov, Generalized Coherent States and their Applications, Springer, Berlin, 1986;
M. Bordemann, M. Brischle, C. Emmrich, S. Waldmann, Subalgebras with conveerging star products: an
algebraic construction forCn, J. Math. Phys. 37 (1996) 6311.q-alg/9503004;
M. Bordemann, M. Brischle, C. Emmrich, S. Waldmann, Phase space reduction of star products: an explicit
construction forCPn, Lett. Math. Phys. 36 (1996) 357;
S. Waldmann, A remark on non-equivalent star products via reduction forCPn, Lett. Math. Phys. 44 (1998)
331.

[23] E. Hawkins, Geometric quantization of vector bundles.math.Q.A/9808116.
[24] S. Iyanaga, Y. Kawada (Eds.), Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, MA, 1977,

p. 275.
[25] P.J. Hilton, An Introduction to Homology Theory, Cambridge University Press, Cambridge, MA, 1961;

S.T. Hu, Homology Theory, Academic Press, New York, 1959.
[26] A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F. Zaccaria, Phys. Rev. Lett.

50 (1983) 1553;
A.P. Balachandran, G. Marmo, N. Mukunda, J.S. Nilsson, E.C.G. Sudarshan, F. Zaccaria, Non-abelian
monopoles break color: 1. Classical mechanics: 2. Field theory and quantum mechanics, Phys. Rev. D29
(1984) 2919 and 2936, and references in the second book of [19].

[27] H.B. Lawson, M.L. Michelson, Spin Geometry, Princeton University Press, Princeton, NJ, 1989.
[28] A.U. Klimyk, Matrix elements of tensor operators, Rept. Math. Phys. 7 (1975) 153;

L.C. Biedenharn, D.E. Flath, On the structure of tensor operators inSU(3), Commun. Math. Phys. 93 (1984)
143;
J.S. Prakash, S. Sharatchandra, A calculus forSU(3) leading to an algebraic formula for Clebsch–Gordan
coefficients, J. Math. Phys. 37 (12) (1996) 6530.


	Fuzzy CP2
	Introduction
	On CP2
	Quantizing CP2
	Fuzzy scalar fields
	The Dirac operator on S2&sime;CP1
	The Dirac operator on CP2
	The projective module for tangent bundle and its complex structure
	The gamma matrices
	The Dirac operator

	Quantization
	Coherent states and star products
	The case of S2&sime;CP1
	The case of CP2


	Acknowledgements
	Fuzzy CP2 as "fuzzy" algebraic variety

	Why CP2 is not spin

	References

